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Our model assumes a population of agents residing at d-dimensional integer lattice locations with one in-

dividual per location. We focus on an expectation zero process Xs indexed on this lattice that is assumed

to be mixing as detailed below. For simplicity, we also assume the process is stationary: the joint distrib-

ution of Xs for a collection of locations is invariant to translation and so, assuming second moments exist,

EfXsXs+hg = C(h): The econometrician�s sample consists of realizations of agents�random variables Xs
at a collection of locations fsig inside a sample region �� and measurements of these locations. We use
the notation j�� j to denote the number of agents in our sample region and, for simplicity, assume that all
locations in �� are sampled. When taking limits, we view �� as one of a sequence of regions indexed by �

that grow to include the whole lattice, an increasing domain approach to asymptotic approximations.

In what follows, we state the notion of mixing coe¢ cients used throughout this Appendix, and provide

proofs of the results in Conley and Molinari (2005).

1 Bolthausen CLT

Letting �(s1; s2) denote maximum across coordinates of js1 � s2j, de�ne a distance measure between sets
�(�1;�2) = inff�(s1; s2) : s1 2 �1; s2 2 �2g: For a mean zero stationary random vector Xs s 2 Zd; let F�
denote the sigma algebra generated by Xs; s 2 �; � � Zd: De�ne mixing coe¢ cients as:

�k;l(n) = supfjP (a1 \ a2)� P (a1)P (a2)j : a1 2 F�1 ; a2 2 F�2 ; j�1j � k; j�2j � l; �(�1;�2) � ng

�(n) = supfjcov(b1; b2)j : b1 2 L2(F�1); b2 2 L2(F�2); kb1k2 � 1; kb2k2 � 1; �(�1;�2) � ng
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Theorem 1 (Bolthausen 1982)

If
P1
m=1m

d�1�k;l(m) <1; k + l � 4; �1;1(m) = o(m�d) and if

1P
m=1

md�1�(m) <1

or

for some � > 0; kXsk2+� <1 and
1P
m=1

md�1�1;1(m)
�=(2+�) <1;

then
P
s2Zd jcov(X0; Xs)j <1: If additionally �2 =

P
s2Zd cov(X0; Xs) > 0; and �� is a �xed sequence of

�nite subsets of Zd that increases to Zd and is such that

lim
�!1

jboundary(�� )j=j�� j = 0;

Then
1

�j�� j1=2
X
s2��

Xs ) N(0; 1)

2 Proofs of Propositions

2.1 Proposition 2

Proposition 2 Suppose errors in locations are bounded and: (a) Xs is a stationary, mixing process with

(4 + �) th moments, � > 0; and with alpha mixing coe¢ cient s.t. �1;1(m)�=(2+�) = o(m�4); (b) Each

Li;� = o(N
1=3
i;� ); and K(�) is a continuous bounded function on [�1; 1]2 with K(0; 0) = 1; and such that

either (i) K(�) has absolutely summable Fourier coe¢ cients, or (ii) K(�) is a uniform function on [�1; 1]2:
Then V̂NP

p! V:

Proof. The proposition using conditions (a) and (b-i) is Proposition 5 in Conley (1999). Here we provide

a proof using (b-ii).

The strategy for proving consistency in the presence of bounded measurement errors in location can

be cast in terms of showing that V̂NP ; obtained using the uniform kernel with cuto¤ L and mismeasured

locations, is asymptotically equivalent to an infeasible estimator that uses true locations and a smaller

cuto¤ point.

It will be convenient in this proof to explicitly refer to each coordinate of s = (m;n); let the sample

region � be an M by N rectangle, suppressing the index � . Let the bound on measurement error in each

dimension be denoted B so that for each point jmtrue �mmeasuredj < B and jnntrue � nmeasuredj < B: We
index points throughout this proof with their true indexes. The kernel weight for the product of points
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(m;n) and (m+ j; n+ k) is denoted ~KMN (m;n; j; k): These weights will be zero and one, but depend on

the measurement errors at both locations (m;n) and (m+ j; n+ k):

V̂NP =
2

MN

PLM+2B
j=0

PLN+2B
k=0

PM
m=j+1

PN
n=k+1

~KMN (m;n; j; k)Xm;nXm�j;n�k

� 1
MN

PM
m=1

PN
n=1X

2
m;n

De�ne ~V as the infeasible, consistent estimator with displacements that are small enough that they still

get weight one:
~V = 2

MN

PLM�2B
j=0

PLN�2B
k=0

PM
m=j+1

PN
n=k+1Xm;nXm�j;n�k

� 1
MN

PM
m=1

PN
n=1X

2
m;n

Conley (1999), Proposition 3 directly implies that ~V ! V in probability. Therefore, it su¢ ces to show

here that the di¤erence R between V̂NP and ~V vanishes. Let R � V̂NP � ~V :

R =
2

MN

LM+2BP
j=0

LN+2BP
k=0

MP
m=j+1

NP
n=k+1

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)Xm;nXm�j;n�k

The result follows from a demonstration that R! 0 in mean square. ER = 0 for LN ; LM large enough since

Xm;n is a �nite-order moving average, so showing var(R)! 0 is su¢ cient. We �rst show E(R�ER)2 ! 0

and then ER! 0:

To simplify notation let Xm;n = 0 for non-positive values of either index. De�ne an array ZMN;mn:

ZMN;mn =

LM+2BP
j=0

LN+2BP
k=0

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)(Xm;nXm�j;n�k �EXm;nXm�j;n�k);

so R� ER = 2
MN

PM
m=1

PN
n=1 ZMN;mn: Hence,

varf
MP
m=1

NP
n=1

ZMN;mng =
���� MP
m=1

NP
n=1

MP
m0=1

NP
n0=1

EZMN;mnZMN;m0n0

���� :
The triangle inequality implies:

varf
MP
m=1

NP
n=1

ZMN;mng �
(

MP
m=1

NP
n=1

P
jm�m0j�2(LM+2B)

P
jn�n0j�2(LN+2B)

��EZMN;mnZMN;m0n0
��+

MP
m=1

NP
n=1

P
m0;n0:jm�m0j>2(LM+2B)orjn�n0j>2(LN+2B)

��EZMN;mnZMN;m0n0
��) ;

(1)

having divided the terms into close ones (within 2(LM + 2B) and 2(LN + 2B) in each direction) and far
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ones (farther than 2(LM + 2B) or 2(LN + 2B)). Note that if the sample region were not rectangular, the

EZMN;mnZMN;m0n0 terms could still be divided into close and far groups of terms.

First look at the close terms. No matter what the shape of the sample region, the maximum number of

points within 2(LM +2B); 2(LN +2B) in each direction from any point is (4LM +8B+1)(4LN +8B+1):

Therefore:
MP
m=1

NP
n=1

P
jm�m0j<2(LM+2B)

P
jn�n0j<2(LN+2B)

��EZMN;mnZMN;m0n0
�� �

MN(4LM + 8B + 1)(4LN + 8B + 1) sup
1�m0�M;1�n0�N



ZMN;m0n0


2
2
:

The next step is to bound sup1�m0�M;1�n0�N


ZMN;m0n0



2
2
. Minkowski�s inequality implies:

kZMN;mnk2 �nPLM+2B
j=0

PLN+2B
k=0 [1� 1(j < LM � 2B)1(k < LN � 2B)] � : : :

~KMN (m;n; j; k) kXm;nXm�j;n�k � EXm;nXm�j;n�kk2
o
:

(2)

Xm;n has �nite (4+�)thmoments which implies that supj;k kXm;nXm�j;n�k � EXm;nXm�j;n�kk2 is bounded,
~KMN (m;n; j; k) are uniformly bounded, and the number of terms where [1 � 1(j < LM � 2B)1(k <
LN � 2B)] = 1 is [(LM + 2B + 1)(LN + 2B + 1)� (LM � 2B + 1)(LN � 2B + 1)] = 4B(LM + LN + 2):

Hence

kZMN;mnk2 � c1(LM + LN + 2)

for some constant c1: Thus giving the following bounds:

kZMN;mnk22 � c
2
1(LM + LN + 2)

2

Therefore the near terms satisfy:

MP
m=1

NP
n=1

P
jm�m0j<2LM

P
jn�n0j<2LN

��EZMN;mnZMN;m0n0
�� � c21MN(4LM+8B+1)(4LN+8B+1)(LM+LN+2)2:

(3)

Next consider the far apart terms.

MP
m=1

NP
n=1

P
m0;n0:jm�m0j>2LMorjn�n0j>2LN

��EZMN;mnZMN;m0n0
��

A mixing inequality from Ibragimov and Linnik (1971) chapter 17 gives a bound on
��EZMN;mn; ZMN;m0n0

��:��EZMN;mn; ZMN;m0n0
�� � c2�1;1(min(2(LM + 2B); 2(LN + 2B))

�=(2+�) sup
m;n

kZMN;mnk22+�

and an argument identical to that above for (2) implies kZMN;mnk2�2+� � c23(LM + LN + 2)
2 for some

constants c2; c3: Combining these terms give a bound on the far terms of:
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MP
m=1

NP
n=1

P
m0;n0:jm�m0j>2LMorjn�n0j>2LN

��EZMN;mnZMN;m0n0
�� �

c4M
2N2�1;1(min(2(LM + 2B); 2(LN + 2B))

�=(2+�)(LM + LN + 2)
2

Combining the bounds on near and far terms yields:

varf
MP
m=1

NP
n=1

ZMN;mng � c21MN(4LM + 8B + 1)(4LN + 8B + 1)(LM + LN + 2)
2+

c4M
2N2�1;1(min(2(LM + 2B); 2(LN + 2B))

�=(2+�)(LM + LN + 2)
2 + o(1):

The rate conditions on Li;� and the mixing condition in parts (a) and (c) imply that the right side of this

expression converges to zero as M;N !1.
Consider now ER :

ER =

= 2
MN

LM+2BP
j=0

LN+2BP
k=0

MP
m=j+1

NP
n=k+1

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)EXm;nXm�j;n�k

= 2
LM+2BP
j=0

LN+2BP
k=0

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)
(M�j)(N�k)

MN EXm;nXm�j;n�k

Using the same mixing inequality to bound EXm;nXm�j;n�k :

jERj �

c5
LM+2BP
j=0

LN+2BP
k=0

���[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)
(M�j)(N�k)

MN

����1;1(max(j; k)) �
(2+�)

� c5
LM+2BP
j=0

LN+2BP
k=0

j[1� 1(j < LM � 2B)1(k < LN � 2B)]j�1;1(max(j; k))
�

(2+�) :

P1
j=0

P1
k=0 �1;1(max(j; k))

�=(2+�) < 1 since �1;1 = o(m�4); so the dominated convergence theorem

implies

c5
LM+2BP
j=0

LN+2BP
k=0

j[1� 1(j < LM � 2B)1(k < LN � 2B)]j�1;1(max(j; k))�=(2+�) ! 0

since j[1� 1(j < LM � 2B)1(k < LN � 2B)]j ! 0; all j; k: �

5



2.2 Proposition 3

Proposition 3 For correctly measured distances, the Gaussian DGPs and sampling framework for the

fXsg process satisfy the conditions in Theorem 3 of Mardia and Marshall (1984). Hence the MLE estimator
is consistent and asymptotically normal.

Notation

We �rst introduce some notation that will be used in the remaining proofs. Let �� be the hypercube

(in d�dimensional Euclidean space) of lattice points s with all components integers si; 1 � si � N , so that
Nd = j�� j : Given our DGP, fXsg is a random �eld with EXs � 0 and cumulant functions up to order

eight absolutely summable. Denote by

f (!) � 1

(2�)d

1P
s1=�1

: : :
1P

sd=�1
rse

�is�!

the spectral density of fXsg, where rs � C (s) = E (XsXu+s) ; !=(!1; : : : ; !d) 2 [��; �]d ; and (s � !) =Pd
h=1 sh!h is the inner product in d�dimensional Euclidean space. For locations on the plane, d = 2: Let

� denote the variance-covariance matrix of the vector [Xs; s 2 �� ] : Let

�� =
@�

@�
; ��2 =

@�

@�2
;

#ij = tr
�
��1�i�

�1�j
�
; i; j = �; �2:

Let � =
�
�; �2

�
denote the true values of the parameters in the DGP. Let �̂MLE =

�
�̂MLE ; �̂

2
MLE

�
denote

the MLE estimator of �:

Proof.

Mardia and Marshall (1984, Theorem 3) show that �̂MLE is consistent and asymptotically normal,

provided that C
�
k; �; �2

�
and its �rst and second derivatives are absolutely summable, and that

aij = lim
#ij

(#ii#jj)
1
2

exists, i; j =
�
�; �2

�
;

det (A) = det

 "
a�� a��2

a��2 a�2�2

#!
6= 0:

The covariance functions C
�
k; �; �2

�
are polynomials in � and �2 for each k 2 �� ; and therefore their

derivatives exist and are continuous. Absolute summability is ensured by the fact that the processes we

consider are �nite order moving averages, and thereforeP
k2Z2

��C �k; �; �2��� = P
k2Z2:kkk�3

��C �k; �; �2��� <1;
with similar considerations for the �rst and second derivatives of C

�
k; �; �2

�
:
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From the above considerations it follows that there exists a positive �nite constant �1 such thatP
k2Z2

(1 + jklj)
���C �k; �; �2��� < �1; l = 1; 2

where kl denotes the l�th component of k; and � denotes either the identity operator 1, one of the

�rst order di¤erential operators @=@�i; or one of the second order operators @2=@�i@�j i; j = 1; 2: Hence,���(2�)2�f (!)��� < �1: Moreover, given our choice of an MA(6) process, and our values of � = 0:3; 0:45; it
follows that there exists a positive �nite constant �2 such that:

1

(2�)2 f (!)
< �2:

This implies that the conditions for Theorem 1 and Lemmas 3.1-3.2, 4.1-4.3 in Kent and Mardia (1996)

are satis�ed, and therefore

tr
�
��1�i�

�1�j
�
=
j�� j
(2�)2

Z
fi (!) fj (!)

f (!)2
d! +O

�p
j�� j

�
where fi (!) =

@f(!)
@�i

: Hence, for i; j = 1; 2

lim
j�� j!1

#ijp
(#ii#jj)

= lim
j�� j!1

j�� j
(2�)2

R fi(!)fj(!)

f(!)2
d! +O

�p
j�� j

�
r�

j�� j
(2�)2

R fi(!)
2

f(!)2
d! +O

�p
j�� j

���
j�� j
(2�)2

R fj(!)
2

f(!)2
d! +O

�p
j�� j

��
=

R fi(!)fj(!)

f(!)2
d!r�R fi(!)

2

f(!)2
d!
��R fj(!)

2

f(!)2
d!
� :

The above limits exist. Given our analytic forms for the spectral densities and its derivatives with

respect of � and �2; direct computations show that det (A) 6= 0: �

2.3 Proposition 4

Proposition 4 Given our DGP for Xs on the plane and correctly measured distances, the uniform kernel

function

K� (si � sj) =
(
1 if jsi1 � sj1j � L� ; jsi2 � sj2j � L� ;
0 otherwise,

(4)

and choosing L� so that L� !1 and L�
j�� j1=2

! 0 as j�� j ! 1, it follows that:

s
j�� j
L2�

�
V̂NP � V̂i

�
d! N

�
0; 8V 2

�
; i =MLE; MM:
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Notation.

We use the same notation as in the proof of Proposition 3.

Proof.

1. Asymptotic Distribution of Spectral Density Estimator on the Plane

Let r̂s denote an estimate of rs � C (s) = E (XsXu+s) given by

r̂s =
1

j�� j
P

u;u+s2��
XsXu+s;

Notice that

E (r̂s) =

dQ
h=1

(N � jshj)

j�� j
rs;

An estimate f̂ (!) of f (!) is then given by

f̂ (!) =
1

(2�)d
P

js1j;:::;jsdj�N
K

�
s1
L1
;
s2
L2
; : : : ;

sd
Ld

�
r̂se

�is�!;

where K (0) = 1; and K (x) is assumed to be an even (K (x) = K (�x)) function, uniformly bounded and
square integrable. Given Nd = j�� j ; let Li ! 1 and Li

N ! 0 as N ! 1; i = 1; : : : ; d. Rosenblatt (1985)
Theorem 7 p. 157 is as follows:

Theorem 5 (Rosenblatt (1985)) Let fXsg be a strictly stationary strongly mixing random �eld with

EXs � 0: Assume that the cumulant functions up to eighth order are absolutely summable. Also let the

spectral density estimate f̂ (!) have weights K (�) satisfying the condition speci�ed above. It then follows
that r

j�� j
Ld

h
f̂ (!)� E

�
f̂ (!)

�i
d! N (0;
) ;

where


 = (2�)d f1 + � (2!1) : : : � (2!d)g f2 (!)
Z
W 2 (�) d�;

� (�) =

(
1 if � = 2m�; m integer

0 otherwise.

W (�) =
1

(2�)d

Z
K (u) e�iu��du

�

Hence at frequency zero, under the above assumptions,r
j�� j
Ld

h
f̂ (0)� E

�
f̂ (0)

�i
d! N

�
0; (2�)d 2f2 (0)

Z
W 2 (�) d�

�
:
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Recall that V = 2�f (0) ; and that we use the uniform kernel in (4). Our DGP satis�es the assumptions

of Theorem 5. Additionally,

V = C (0) + 4C (1) + 4C
�p
2
�
+ 4C (2) + 8C

�p
5
�
+ 4C

�p
8
�
+ 4C (3) + :::

+8C
�p
10
�
+ 8C

�p
13
�
+ 4C (4) + 8C

�p
17
�
+ 4C

�p
18
�
+ 8C

�p
20
�
+ :::

+4C ([0; 5]) + 8C ([3; 4]) + 8C
�p
26
�
+ 8C

�p
29
�
+ 4C

�p
32
�
+ 4C (6)

Therefore,

�
E
�
V̂NP

�
� V

�
= Op

�
j�� j�1=2

�
Hence

lim
N!1

r
j�� j
L2

[E (fN (0))� f (0)] = 0;

from which r
j�� j
L2

h
f̂ (0)� f (0)

i
d! N

�
0; (2�)2 2f2 (0)

Z
W 2 (�) d�

�
: (5)

2. Asymptotic Distribution of Speci�cation Test on the Plane

We want to show thatr
j�� j
L2

�
V̂NP � V̂i

�
d! N

�
0;

1

(2�)2
2V 2

Z �R
K (x) e�ix��dx

�2
d�

�
; i =MLE;MM:

It is then easy to verify that with a uniform kernel 1
(2�)2

R �R
K (x) e�ix��dx

�2
d� = 4:

Consider �rst the MLE estimator. The goal is to show that
q

j�� j
L2

�
V̂MLE � V

�
p! 0; then the desired

result will follow from (5). As shown in Proposition 3, our model with � = 0:3 and � = 0:45 satis�es the

conditions of Theorem 3 of Mardia and Marshall (1984). Hencep
j�� j

�
�̂MLE � �

�
d! (0;H) ;

where H is the variance-covariance matrix of �: Since V̂MLE is given by the product of �̂2MLE and a

polynomial in �̂MLE ; the desired result follows.

Consider now the MM estimator. Since our MM estimator uses unbiased covariances, Guyon�s (1982)

results ensure that
q

j�� j
L2

�
�̂MM � �

�
p! 0; from which the result follows. �

3 Analytic Expressions for the Covariance Function and the Asymp-

totic Variance on the Plane

The DGP for Xs is

Xs =
X

r:ks�rk�3
�ks�rkus�r

9



where us is IID N(0; �2): One can verify that:

V = C (0) + 4C (1) + 4C
�p
2
�
+ 4C (2) + 8C

�p
5
�
+ 4C

�p
8
�
+ 4C (3) + :::

+8C
�p
10
�
+ 8C

�p
13
�
+ 4C (4) + 8C

�p
17
�
+ 4C

�p
18
�
+ 8C

�p
20
�
+ :::

+4C ([0; 5]) + 8C ([3; 4]) + 8C
�p
26
�
+ 8C

�p
29
�
+ 4C

�p
32
�
+ 4C (6) ;

and

C (0) = �2
�
1 + 4�2 + 4�2

p
2 + 4�4 + 8�2

p
5 + 4�2

p
8 + 4�6

�
C (1) = �2

�
2�+ 4�1+

p
2 + 2�3 + 4�

p
2+
p
5 + 4�2+

p
5 + 4�

p
5+
p
8 + 2�5

�
C
�p
2
�
= �2

�
2�
p
2 + 4�1+

p
5 + 2�2 + 4�2+

p
2 + 2�

p
2+
p
8 + 4�3+

p
5 + 2�2

p
5
�

C (2) = �2
�
3�2 + 4�1+

p
5 + 2�4 + 4�2+

p
8 + 2�2

p
2 + 2�2

p
5
�

C
�p
5
�
= �2

�
2�
p
5 + 2�1+

p
2 + 2�3 + 2�1+

p
8 + 2�

p
2+
p
5 + 2�2+

p
5 + 2�3+

p
2 + 2�3+

p
8
�

C
�p
8
�
= �2

�
4�1+

p
5 + 2�

p
8 + 2�4 + �2

p
2 + 4�3+

p
5
�

C (3) = �2
�
4�3 + 4�

p
5+
p
2 + 4�

p
5+
p
8
�

C
�p
10
�
= �2

�
2�1+

p
5 + 2�2+

p
2 + 2�4 + 2�

p
8+
p
2 + 2�2

p
5
�

C
�p
13
�
= �2

�
2�1+

p
8 + 2�

p
2+
p
5 + 2�2+

p
5 + 2�5

�
C (4) = �2

�
3�4 + 2�2

p
5 + 2�2

p
8
�

C
�p
17
�
= �2

�
2�
p
8+
p
5 + 2�2+

p
5 + 2�3+

p
2
�

C
�p
18
�
= �2

�
2�6 + 2�2

p
5 + 2�

p
8+
p
2
�

C
�p
20
�
= �2

�
2�2+

p
8 + 2�3+
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