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Our model assumes a population of agents residing at d-dimensional integer lattice locations with one in-
dividual per location. We focus on an expectation zero process Xg indexed on this lattice that is assumed
to be mixing as detailed below. For simplicity, we also assume the process is stationary: the joint distrib-
ution of Xy for a collection of locations is invariant to translation and so, assuming second moments exist,
E{XsXsin} = C(h). The econometrician’s sample consists of realizations of agents’ random variables Xg
at a collection of locations {s;} inside a sample region A; and measurements of these locations. We use
the notation |A;| to denote the number of agents in our sample region and, for simplicity, assume that all
locations in A, are sampled. When taking limits, we view A, as one of a sequence of regions indexed by 7
that grow to include the whole lattice, an increasing domain approach to asymptotic approximations.

In what follows, we state the notion of mixing coefficients used throughout this Appendix, and provide

proofs of the results in Conley and Molinari (2005).

1 Bolthausen CLT

Letting 7(s1, s2) denote maximum across coordinates of |s; — sa|, define a distance measure between sets
7(A1, Ag) = inf{n(s1,52) : 51 € A1, 52 € Ao}. For a mean zero stationary random vector X, s € Z¢, let Fy

denote the sigma algebra generated by X, s € A, A C Z¢. Define mixing coefficients as:

OA].CJ(’I?,) = Sup{|P(a1 ﬂag) — P(al)P(a2)| ray € FAl,ag S FA2, ’Aﬂ < k, |A2| < Z,W(Al,Ag) > n}
p(n) = sup{|cov(b1,b2)|: b1 € La(Fn,),b2 € La(Fp,), [[bally < 1, |[bofl < 1,7(A1,A2) > n}



Theorem 1 (Bolthausen 1982)
Ify> md_lak,l(m) <00,k +1<4, a1.00(m) = o(m™%) and if
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for some § >0, || Xs|ly, 5 < 00 and ma a1 (m)%/ 39 < o,

m=1

then > ¢ 74 [cov(Xo, Xs)| < o0o. If additionally 0 =Y, ya cov(Xo, Xs) > 0, and A, is a fived sequence of
finite subsets of Z% that increases to Z% and is such that

lim |[boundary(A;)|/|A+] =0,

T—00

Then
1

ST > Xo=N(0,1)
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2 Proofs of Propositions

2.1 Proposition 2

Proposition 2 Suppose errors in locations are bounded and: (a) Xg is a stationary, mizing process with
(4+0)th moments, 6 > 0, and with alpha mixing coefficient s.t. aoo,oo(m)(s/(z“"s) = o(m™*); (b) Each
L, = o(Nilf’), and K(-) is a continuous bounded function on [—1,1]* with K(0,0) = 1, and such that
either (i) K(-) has absolutely summable Fourier coefficients, or (i) K(-) is a uniform function on [—1,1]%.
Then VNP Ly

Proof. The proposition using conditions (a) and (b-i) is Proposition 5 in Conley (1999). Here we provide
a proof using (b-ii).

The strategy for proving consistency in the presence of bounded measurement errors in location can
be cast in terms of showing that Vyp, obtained using the uniform kernel with cutoff L and mismeasured
locations, is asymptotically equivalent to an infeasible estimator that uses true locations and a smaller
cutoff point.

It will be convenient in this proof to explicitly refer to each coordinate of s = (m,n), let the sample
region A be an M by N rectangle, suppressing the index 7. Let the bound on measurement error in each
dimension be denoted B so that for each point |m!™¢ — mmessured| < B and |pntrue — pmeasured| < B We

index points throughout this proof with their true indexes. The kernel weight for the product of points



(m,n) and (m + j,n + k) is denoted Ky;n(m,n, ], k). These weights will be zero and one, but depend on

the measurement errors at both locations (m,n) and (m + j,n + k).

o9 Ly42B s~Ln+2B ~~M N o .
VNp = 3ix Zj:o k=0 Zm:j—l—l Zn:k+1 Kyn(m,n, j, k)Xm,nXm—j,n—k

1 M N
T MN Zm:l En:l X2

Define V as the infeasible, consistent estimator with displacements that are small enough that they still

get weight one:

2 Ly —2B x~Ly—2B ~M N
V= 3w 2% b0 Dam=jtl 2om—kt1 XmnXm—jn—k
M N
_ﬁ Zm:l Zn:l X2
Conley (1999), Proposition 3 directly implies that V — V in probability. Therefore, it suffices to show
here that the difference R between VN p and V vanishes. Let R = VNp -V
2 Ly+2B Ly+2B M

R=-—"— N SO0 z [1—1(j < Ly — 2B)1(k < Ly — 2B)|Kpnrn (m, 1, 5, ) Xonn Xon—jn—r:
=0 k=0 m=j+1n=k+1

The result follows from a demonstration that R — 0 in mean square. ER = 0 for Ly, Ljs large enough since

Xm.n is a finite-order moving average, so showing var(R) — 0 is sufficient. We first show E(R— ER)? — 0
and then FR — 0.

To simplify notation let X,,,, = 0 for non-positive values of either index. Define an array Zyn mn:

ZMN,mn =

Ly+2B Ly+2B ~
Z Z [1 - 1(] < Ly — QB)l(k‘ < Ly — QB)]KMN(m,n,j, k)(Xm,nXm—j,n—k; - EXm,nXm—j,n—k)a
J=0 =

2 M N
so R—ER = §f5v > m=1 2 n—1 ZMN,mn- Hence,
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The triangle inequality implies:

N
Z Z Z }EZMN,mn

M=

M N
var{ > > ZuNmn} < {

m=1n=1 1n=1 |m-m/|<2(Lp+2B) |n—n'|<2(Ly+2B)
(1)
M N
E Z Z }EZMN,mn } )
m=1n=1 m/ n/:jm—m'|>2(Ly+2B)or|n—n'|>2(Ly+2B)

having divided the terms into close ones (within 2(Lys + 2B) and 2(Ly + 2B) in each direction) and far



ones (farther than 2(Ly; + 2B) or 2(Ly + 2B)). Note that if the sample region were not rectangular, the
EZMNmnZ N mn terms could still be divided into close and far groups of terms.

First look at the close terms. No matter what the shape of the sample region, the maximum number of
points within 2(Lys 4+ 2B), 2(Ly +2B) in each direction from any point is (4L +8B +1)(4Ly +8B+1).

Therefore:

M N

> > |EZMNmnZMNmim | <
m=1n=1 ‘m—m’|<2(LM+QB) |n—n’|<2(LN+2B)
MN 4Ly + 8B+ 1)(4Ly + 8B + 1) sup | Z 15 g || -

1<m/<M,1<n/<N

The next step is to bound sup; <,y <ar1<p/<n HZ MN,m'n’' Z Minkowski’s inequality implies:

”ZMN,m'rL||2 <
{25;40“3 ENF2BIL _1(j < Lar — 2B)1(k < Ly — 2B)] - ... (2)

Karn(m,n, 4, 6) | Xonn Xom—jint — EXmme,j,n,k]b} .

Xm.n has finite (4+0)th moments which implies that sup; ;. [| Xim.n Xm—jn—t — EXmnXm—jn—kl, is bounded,
Kyn(m,n,j,k) are uniformly bounded, and the number of terms where [1—1(j < Ly —2B)1(k <
Ly —2B)] = 1is [(Lys + 2B+ 1)(Ly +2B +1) — (Lyy — 2B + 1)(Ly — 2B +1)] = 4B(Ly; + Ly + 2).

Hence

| ZyNmnlly < c1(Lar + Ly + 2)

for some constant ¢;. Thus giving the following bounds:

Therefore the near terms satisfy:

M N
D > S |EZunmnZynmn| < EMN(ALy+8B+1)(ALN+8B+1)(Ly+Ly+2)*.
m=1n=1 |m—-m/|<2Ly |n—n'/|<2Ly

(3)

Next consider the far apart terms.

M N
Z Z Z |EZMN,ngMN,m’n’

m=1n=1 m/n:jm—m/|>2L)ror|n—n'|>2LN

A mixing inequality from Ibragimov and Linnik (1971) chapter 17 gives a bound on ’EZ MN,mns ZMN,m'n' |

< o000 00 (Min(2(Las 4 2B), 2(Ly + 2B))% 2+ sup HZMN,,mHg+ 5

m,n

’EZMN,mna ZMN,m’n’

and an argument identical to that above for (2) implies HZ]\4]\/7WL||%+(s < &(Ly + Ly + 2)? for some

constants cg, cs. Combining these terms give a bound on the far terms of:



Z Z }EZMN,mn

m=1n=1 m/ n:l[m—m'|>2Lor|n—n'|>2LN

cAM? N2t oo (min(2(Lys + 2B), 2(Ly + 2B)) G (L + Ly + 2)?

Combining the bounds on near and far terms yields:

M N
var{ 3> Y Zynmn} < AMN 4Ly + 8B + 1)(4Ly + 8B + 1)(Las + Ly +2)%+

m=1n=1

cAM? N2 0o (min(2(Las + 2B), 2(Ly + 2B))Y/ CH)(Lyr 4+ Ly + 2)2 + o(1).

The rate conditions on L;  and the mixing condition in parts (a) and (c) imply that the right side of this
expression converges to zero as M, N — oo.
Consider now ER :

ER =

Ly+2B Ly+2B M

= 127 Z D z [1—1(j < Ly — 2B)1(k < Ly — 2B)|Knn (m,n, 5, k) EX o Xon—jn—k
k=0 m=j+1n=k+1

LM+213 Ln+2B . ~ .\ (M—§)(N—k)
=2 Z Z [1 - 1(] < LM - QB)l(k < LN - QB)}KMN(manmj’k)WEXm,nXm—j,n—k
im0 k=

Using the same mixing inequality to bound EX, n X jpn—k :

|ER]
Ly+2B Ly+2B ~ (M— )(N—k‘) 3 _6
cs > > I[1=1(j < Ly —2B)1(k < Ly —2B)|Kyn(m,n,j, l{;)]jwiN Qoo 00 (max(j, k)) C+9)
j=0 k=0
Ly+2B Ly+2B __6 __
<ecs Y. > I1—=1(j < Ly —2B)1(k < Ly — 2B)]| Qoo 00 (max(j, k)) @+9) .
7=0 k=0

D720 2k Coo,00 (max(, k)% 2+ < oo since qoooo = 0(m™%), so the dominated convergence theorem
implies
Ly+2B Ln+2B

s > o |1=1( <Ly — 2B)1(k < Ly — 2B)]|ace,00 (max(j, k)@ — 0
Jj=0 k=0

since |[1 — 1(j < Ly — 2B)1(k < Ly —2B)]| — 0, all j, k. W



2.2 Proposition 3

Proposition 3 For correctly measured distances, the Gaussian DGPs and sampling framework for the
{Xs} process satisfy the conditions in Theorem 8 of Mardia and Marshall (1984). Hence the MLE estimator

1s consistent and asymptotically normal.

Notation

We first introduce some notation that will be used in the remaining proofs. Let A, be the hypercube
(in d—dimensional Euclidean space) of lattice points s with all components integers s;, 1 < s; < N, so that
N? = |A,|. Given our DGP, {X,} is a random field with EXs = 0 and cumulant functions up to order
eight absolutely summable. Denote by
oo

Z rsefis-w

(27T)d §1=—00 Sq=—00

18

the spectral density of {Xg}, where rs = C (s) = E (XsXugs), w= (w1, ...,wq) € [-m, 7%, and (s w) =
22:1 Spwp, is the inner product in d—dimensional Euclidean space. For locations on the plane, d = 2. Let

Y denote the variance-covariance matrix of the vector [Xg,s € A;]. Let

o ox
E,0 = aipa 202:@7
¥y = tr (SR, 4,5 =p,0%

Let 0 = (p, 02) denote the true values of the parameters in the DGP. Let 0515 = (ZJMLE, 6?\4LE) denote
the MLE estimator of 6.

Proof.
Mardia and Marshall (1984, Theorem 3) show that 0 MLE 18 consistent and asymptotically normal,

provided that C (k; 0, 02) and its first and second derivatives are absolutely summable, and that
(Viij5)

det (A) = det([ o Tpo? ]) # 0.
Upo2  Qg242

The covariance functions C' (k; 0, 02) are polynomials in p and o2 for each k € A,, and therefore their

a;; = lim exists, 7,j = (P7 02)7

S

derivatives exist and are continuous. Absolute summability is ensured by the fact that the processes we

consider are finite order moving averages, and therefore

> |C(kipo®)|= X |C(kipo?)| <o,
keZz? keZ2:|k||<3

with similar considerations for the first and second derivatives of C (k; o, 02) .



From the above considerations it follows that there exists a positive finite constant n; such that

Z (1+|kl|>‘AC(kaan2)‘<nl7 [=1,2
kez?

where k; denotes the [—th component of k, and A denotes either the identity operator 1, one of the
first order differential operators 9/06;, or one of the second order operators 62/ 00;00; i,j = 1,2. Hence,
‘(27r)2 Af (w)‘ < 1ny. Moreover, given our choice of an MA(6) process, and our values of p = 0.3, 0.45, it

follows that there exists a positive finite constant 1y such that:

1
(2m)* f (@)
This implies that the conditions for Theorem 1 and Lemmas 3.1-3.2, 4.1-4.3 in Kent and Mardia (1996)

are satisfied, and therefore

< Mo

[Arl [ fi(w) i (@)
tr (2718,87Y;) = )’ T ()P dw+0(\/\AT|)

where f; (w) = %9‘:). Hence, for i,j = 1,2

lim T lim (% f fz o ( )
|Ar =00 \/(94i05) Aflﬂw\/(('zfj)lz J ];5(( )) dw +0 (F» ((27r
L i
(7 ) (1 5 a0)

The above limits exist. Given our analytic forms for the spectral densities and its derivatives with

(VA1)

respect of p and o2, direct computations show that det (4) # 0. W

2.3 Proposition 4

Proposition 4 Given our DGP for Xg on the plane and correctly measured distances, the uniform kernel
function
1 if |si1 —sj1] < Ly, [si2 — sj2| < Ly,

0 otherwise,

K (si—sj) = { (4)

and choosing L, so that L. — oo and ™ |1/2 — 0 as |A;| — oo, it follows that:

[Ar]
12

T

(VNP _ V) 4 N (0,8V2), i=MLE, MM,



Notation.

We use the same notation as in the proof of Proposition 3.

Proof.
1. Asymptotic Distribution of Spectral Density Estimator on the Plane
Let 75 denote an estimate of rs = C'(s) = E (XsXuts) given by

R 1
Ts = Z Xqu—l—s:
|AT| u,u+seA-

Notice that

[T (N —sul)

E(fs) = h=l ’A ‘ TS?
T

An estimate f (w) of f (w) is then given by

~ 1 S1 S22 Sd .
fw) = 3 K()w
(27T)d |31|7"’7|Sd|§N Ll L2 Ld s

where K (0) = 1, and K (x) is assumed to be an even (K (x) = K (—x)) function, uniformly bounded and
square integrable. Given N¢ = |A,|, let L; — oo and % —0as N —o0,i=1,...,d. Rosenblatt (1985)

Theorem 7 p. 157 is as follows:

Theorem 5 (Rosenblatt (1985)) Let {Xs} be a strictly stationary strongly mizing random field with
EXs = 0. Assume that the cumulant functions up to eighth order are absolutely summable. Also let the
spectral density estimate f(w) have weights K (-) satisfying the condition specified above. It then follows
that

2l fw) -2 (f@)] 4 N 0.0),
where
Q = (20" {1+ (2er). .1 (2e0)} £ @) [ WP (@) dax
1 if p=2mm, m integer
nw) = { 0 otherwise.
1 —tu-a
W) = W/K(u)e du
O

Hence at frequency zero, under the above assumptions,

|Ar|
Ld

0~ E(F)] 4 (0,022 0 [ W (@) da).
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Recall that V' = 27 f (0), and that we use the uniform kernel in (4). Our DGP satisfies the assumptions
of Theorem 5. Additionally,

Vo= C(0)+4C (1) +4C (V2) +4C(2) +5C (V5) +4C (V8) +4C (3) +
+8C (V10) +8C (VI3) +4C (4) + 8C (VIT) +4C (VI8) +8C (V20) + ...
+4C ([0,5]) + 8C ([3,4]) + 8C (V26) + 8C (v29) +4C (V32) +4C (6)

Therefore,
(2 (e) - v) = 0, (1n17)

Hence Tim. !2;\ [E (fy (0)) — £ (0)] =0,

from which M fo) -] 4 v (0, 2 2f* ) [ WP () da) ' ®)

2. Asymptotic Distribution of Specification Test on the Plane
We want to show that

A 1 .
’L2 (V NP — ‘/z> i) N <0, (2)22V2/ (IK(X) e_zx.adX)2d0t> y = MLE,MM
T
It is then easy to verify that with a uniform kernel @ L[ (JK(x ’x""dx)2 do = 4

Consider first the MLE estimator. The goal is to show that | L2| (VM LE — V) 2, 0; then the desired
result will follow from (5). As shown in Proposition 3, our model with p = 0.3 and p = 0.45 satisfies the
conditions of Theorem 3 of Mardia and Marshall (1984). Hence

VA (éMLE - 9) < (0, H),

where H is the variance-covariance matrix of 0. Since Vg is given by the product of 6%, and a
polynomial in py,r g, the desired result follows.

Consider now the MM estimator. Since our MM estimator uses unbiased covariances, Guyon’s (1982)

results ensure that |A 1] (0 MM 0) 2 0, from which the result follows. W

3 Analytic Expressions for the Covariance Function and the Asymp-

totic Variance on the Plane

The DGP for X is

Xo= S plrlug,

r:||s—r||<3

9



where ug is IID N(0,02). One can verify that:

Vo= C(0)+4C (1) +4C (V2) +4C(2) +8C (V5) +4C (V8) +4C (3) + .
+80(\/ﬁ>+80<ﬁ>+40 +8C(m> ( >+86<f)+...
+40 ([0, 5]) +8C (3,4)) + 8C (V26) + 8C (vV29) +4C (V32) +4C (6),

and
C(0) = o2 (1 +4p? + 492V 4 4p* + 8p>V5 4 4p?VE 4 4,06)

C(1) = o2 <2p+4p1+ﬁ+2p3 +4p\/§+\/5+4p2+x/5+4p\/5+x/§+2p5)
o <\/§) — 52 (2p\/§+4p1+\/5+ 20?2 +4p2+\/§+2p\/§+\/§+4p3+\@+2p2\/§>
C(2) = o* <3p2 + 4p1+\/‘?’ +2p* + 4/)2+‘/g + 2p2ﬂ + 2/)2\/5)
C (\/5> =2 (2/)\/5 + 2pl+\/5 +2p% + 2p1+‘/g + 2p‘/§+ﬁ + 2p2+‘/5 + 2p3+‘/5 + 2p3+‘/g>
C <\/§) =o? (4/)“”/5 + 2/)‘/g +2p% + p2\/§ + 4p3+\/5)
C(3) = o2 (4p3 +4pVPHVE 4 4p‘/5+\/§)
C (m) — 52 (2p1+¢5 L 2p2TVE Lot | 9, VERVE | 2p2ﬁ)

o2 (2p1+x/§ + 2px/§+\/5 + 2p2+\/5 + 2p5>

Q
—
3

I

C (4) = o2 <3p4 +2p2V5 2p2\/§>
C (ﬁ) — 52 (2/)\/§+\/5 422V 4 2p3+ﬂ>
(\/E) — 2 (2p6+2p2\/5+2p\/§+ﬁ)

(\/ﬁ) — 52 (2p2+\/§+ 2p3+\/5+p2\/5)

C([0 5]) =20%p°

C (3 4]) = 20> f+f
C (m) o2 3+f
C (@) o2 3+f

10
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