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ASYMPTOTIC PROPERTIES FOR A CLASS OF PARTIALLY
IDENTIFIED MODELS

BY ARIE BERESTEANU AND FRANCESCA MOLINARI1

We propose inference procedures for partially identified population features for
which the population identification region can be written as a transformation of the Au-
mann expectation of a properly defined set valued random variable (SVRV). An SVRV
is a mapping that associates a set (rather than a real number) with each element of the
sample space. Examples of population features in this class include interval-identified
scalar parameters, best linear predictors with interval outcome data, and parameters
of semiparametric binary models with interval regressor data. We extend the analogy
principle to SVRVs and show that the sample analog estimator of the population iden-
tification region is given by a transformation of a Minkowski average of SVRVs. Using
the results of the mathematics literature on SVRVs, we show that this estimator con-
verges in probability to the population identification region with respect to the Haus-
dorff distance. We then show that the Hausdorff distance and the directed Hausdorff
distance between the population identification region and the estimator, when properly
normalized by

√
n� converge in distribution to functions of a Gaussian process whose

covariance kernel depends on parameters of the population identification region. We
provide consistent bootstrap procedures to approximate these limiting distributions.
Using similar arguments as those applied for vector valued random variables, we de-
velop a methodology to test assumptions about the true identification region and its
subsets. We show that these results can be used to construct a confidence collection and
a directed confidence collection. Those are (respectively) collection of sets that, when
specified as a null hypothesis for the true value (a subset of values) of the population
identification region, cannot be rejected by our tests.

KEYWORDS: Partial identification, confidence collections, set valued random vari-
ables, support functions.

1. INTRODUCTION

THIS PAPER CONTRIBUTES to the growing literature on inference for partially
identified population features. These features include vectors of parameters or
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of statistical functionals characterizing a population probability distribution of
interest for which the sampling process and the maintained assumptions re-
veal that they lie in a set—their identification region—which is not necessarily
a singleton (Manski (2003)). Much of this literature focuses on cases in which
the population identification region is an interval on the real line (e.g., Manski
(1989)) or can be defined as the set of minimizers of a criterion function (e.g.,
Chernozhukov, Hong, and Tamer (2007)). In these cases the analogy principle
is applied to replace either the extreme points of the interval or the criterion
function with their sample analogs to obtain an estimator for the identifica-
tion region. Limit theorems for sequences of scalar or vector valued random
variables are then employed to establish consistency of these estimators and to
construct confidence sets that asymptotically cover each point in the identifi-
cation region (Imbens and Manski (2004)) or the entire identification region
(Chernozhukov, Hong, and Tamer (2007)) with at least a prespecified proba-
bility.

In this paper, we introduce a novel approach for estimation and inference
for a certain class of partially identified population features. The key insight
that leads to our approach is the observation that, within this class, the com-
pact and convex identification region2 of the vector of parameters (or statistical
functionals) of interest is given by the “expectation” of a measurable mapping
that associates a set (rather than a real number or a real vector) with each
element of the sample space. In the mathematics literature, this measurable
mapping is called a set valued random variable (SVRV). Just as one can think
of the identification region of a parameter vector as a set of parameter vectors,
one can think of an SVRV as a set of random variables (Aumann (1965)). We
extend the analogy principle to SVRVs and estimate the identification region,
which is the “expectation” of an SVRV, by its sample analog, which is a “sample
average” of SVRVs. The expressions “expectation” and “sample average” used
above are in quotation marks because when working with SVRVs, a particular
expectation operator needs to be used—the Aumann expectation; similarly, a
particular summation operator needs to be used—the Minkowski summation—
so as to get the set analog of the sample average, which is called the Minkowski
sample average.3 Approaching the problem from this perspective is beneficial
because it allows the researcher to perform, in the space of sets, operations
which are analogs to those widely used in the space of vectors. Moreover, con-
vex compact sets can be represented as elements of a functional space through
their support function (Rockafellar (1970, Chap. 13)). The support function of
a compact convex SVRV is a continuous valued random variable indexed on
the unit sphere, and the support function of a Minkowski sample average of
SVRVs is the sample average of the support functions of the SVRVs. Hence

2When the population identification region is not a convex set, our analysis applies to its convex
hull.

3These concepts are formalized in Section 2.
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we can derive the asymptotic properties of set estimators using laws of large
numbers and central limit theorems for stochastic processes that are of famil-
iar use in econometrics. This enables us to conduct inference for the entire
identification region of a population feature of interest and for its subsets in a
way that is completely analogous to how inference would be conducted if this
feature were point identified.

Overview

Our methodology easily applies to the entire class of interval-identified
scalar parameters. Moreover, it applies to the class of partially identified pop-
ulation features which have a compact and convex identification region that
is equal to a transformation of the Aumann expectation of a properly defined
SVRV. Examples of population features in this class include means and best
linear predictors with interval outcome data, and parameter vectors of semi-
parametric binary models with interval regressor data (under the assumptions
of Magnac and Maurin (2008)).

The SVRVs whose Aumann expectation is equal to the identification region
of the population feature of interest can be constructed from observable ran-
dom variables. The mathematics literature on SVRVs provides laws of large
numbers and central limit theorems for the Hausdorff distance between the
Minkowski average of a random sample of SVRVs and their Aumann expecta-
tion. These limit theorems are obtained by exploiting the isometric embedding
of the family of convex compact subsets of �d with the Hausdorff metric into
the Banach space of continuous functions on the unit sphere with the uniform
metric, which is provided by the support function. This allows one to repre-
sent random sets as elements of a functional space, for which limit theorems
are available. Using these results, we show that our estimator of the identi-
fication region, which is given by a transformation of the Minkowski average
of a random sample of SVRVs, is

√
n-consistent, in the sense that the Haus-

dorff distance between the estimated set and the population identification re-
gion converges to zero at the rate Op(1/

√
n)� This result does not depend on

whether the random variables used to construct the SVRVs have a continuous
or a discrete distribution.4

We then introduce two Wald-type statistics which, respectively, allow one to
test (i) hypothesis about the entire identification region and (ii) its subsets. The
first statistic is based on the Hausdorff distance. Because the Hausdorff dis-
tance between two nonempty compact setsA and B is equal to zero if and only
if A = B, this distance is ideal to test a hypothesis which specifies the entire

4The choice of the Hausdorff distance to establish consistency results is a natural one, as this
distance is a generalization of the Euclidean distance, and it is widely used in the literature on
estimation of partially identified models (e.g., Manski and Tamer (2002)).
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identification region of a vector of parameters.5 When the Hausdorff distance
between our estimator and the population identification region is properly nor-
malized by

√
n, it converges in distribution to a function of a Gaussian process

whose covariance kernel depends on parameters of the population identifica-
tion region which can be consistently estimated. Hence, our first test statistic
is given by the Hausdorff distance between the estimated set and the hypoth-
esized population identification region. The null hypothesis is rejected if this
statistic exceeds a critical value. We show that this critical value can be consis-
tently estimated using bootstrap methods.

The second statistic is based on the directed Hausdorff distance. Because the
directed Hausdorff distance from a nonempty compact set A to a nonempty
compact set B is equal to zero if and only if A⊆ B, this distance is ideal to test
an inclusion hypothesis which specifies a subset of the identification region.
Similarly to the test based on the Hausdorff distance, normalization by

√
n of

the directed Hausdorff distance from the population identification region to
the estimator converges in distribution to a function of a Gaussian process.
Hence, our second test statistic is given by the directed Hausdorff distance
from the hypothesized subset of the population identification region to the
estimator. Similarly to the previous case, the null hypothesis is rejected if this
test statistic exceeds a critical value that can be consistently estimated using
the bootstrap.

We show that the tests that we propose are consistent against any fixed al-
ternative. We then extend the notion of local alternatives to partially identified
models, derive the asymptotic distribution of our tests against these local alter-
natives, and show that the tests are locally asymptotically unbiased.

Our tests can be inverted to yield confidence statements about the true iden-
tification region or its subsets. In the case of inversion of the test based on
the Hausdorff distance, we obtain what we call a confidence collection which
is given by the collection of all sets that, when specified as null hypothesis for
the true value of the population identification region, cannot be rejected by
our test. Its main property is that (asymptotically) the population identifica-
tion region is one of its elements with a prespecified confidence level (1 − α).
In the case of inversion of the test based on the directed Hausdorff distance,
we obtain what we call a directed confidence collection which is given by the col-
lection of all sets that, when specified as a null hypothesis for a subset of values
of the population identification region, cannot be rejected by our test. Also in
this case the population identification region is (asymptotically) one of its el-
ements with a prespecified confidence level (1 − α)� Additionally, the union
of the sets in the directed confidence collection has the property of covering
(asymptotically) the true identification region with a prespecified confidence
level (1 −α). This result establishes a clear connection between our Wald-type

5This statistic can also be used to test hypotheses which specify the entire identification region
of linear combinations of the partially identified population features.
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test statistic based on the directed Hausdorff distance and the quasi-likelihood
ratio (QLR)-type inferential statistic proposed by Chernozhukov, Hong, and
Tamer (2007), which allows one to construct confidence sets which asymptoti-
cally cover the true identification region with confidence level (1 − α). In the
special case of interval identified scalar parameters, we establish the asymp-
totic equivalence between the square of our test statistic based on the directed
Hausdorff distance, and the inferential statistic of Chernozhukov, Hong, and
Tamer (2007).

Hence, for the class of problems addressed in this paper, there is a com-
plete analogy, at the level of estimation and inference, between the approach
usually adopted for point-identified parameters and the approach that we pro-
pose for partially identified parameters. In particular, when point identified,
the parameters of interest can be consistently estimated using a transformed
sample average of the data. The resulting estimator has an asymptotically nor-
mal distribution. The confidence region for the parameter vector is given by a
collection of vectors—that is, a collection of points in the relevant space—and
can be obtained through the inversion of a properly specified test statistic. In
the partially identified case, our results show that the identification region of
each of these parameter vectors can be consistently estimated using a trans-
formed Minkowski average of the data. The Hausdorff distance (and the di-
rected Hausdorff distance) between the population identification region and
its estimator has an asymptotic distribution which is a function of a Gaussian
process. The confidence region for the population identification region is given
by a collection of sets (rather than points) and can be obtained through the in-
version of the test statistics that we propose.

Our inferential approach targets the entire identification region of a par-
tially identified population feature, and provides asymptotically exact size crit-
ical values with which to test hypotheses and construct confidence collections.
However, there are applications in which the researcher wants to test hypothe-
ses and construct confidence sets for the “true” value of the population feature
of interest, following the insight of Imbens and Manski (2004). For this case,
our methodology based on the directed Hausdorff distance provides conserv-
ative confidence sets that asymptotically cover each point in the identification
region with a prespecified probability.

Structure of the Paper

In Section 2 we propose our test statistics, establish their properties, provide
a consistent bootstrap procedure to estimate their limiting distributions, show
how the test statistics can be inverted to obtain the confidence collection and
the directed confidence collection, and provide a simple characterization of
the collections. In Section 3 we apply our results to the problem of inference
for interval-identified scalar parameters and give a step-by-step description of
how our method can be implemented in practice. In Section 4 we apply our
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results to conduct inference for the best linear predictor parameters when only
interval data are available for the outcome variable, but the covariates are per-
fectly observed. We show how to test linear restrictions on these parameters
and we prove that the estimator of the identification region for a single com-
ponent of this parameter vector can be computed using standard statistical
packages. Section 5 presents Monte Carlo results evaluating the finite sample
performance of our estimators and test statistics, and Section 6 concludes. An
Appendix contains all the proofs.

Related Literature

Consistent estimators for specific partially identified population features
have been proposed, among others, by Manski (1989), Horowitz and Man-
ski (1997, 1998, 2000), Manski and Tamer (2002), Chernozhukov, Hong, and
Tamer (2002, 2007), Honore and Tamer (2006), Andrews, Berry, and Jia
(2004), and Chernozhukov, Hahn, and Newey (2005). The development of
methodologies that allow for the construction of confidence regions for par-
tially identified population features is a topic of current research. Horowitz
and Manski (1998, 2000) considered the case in which the identification region
of the parameter of interest is an interval whose lower and upper bounds can be
estimated from sample data, and proposed confidence intervals that asymptot-
ically cover the entire identification region with fixed probability. For the same
class of problems, Imbens and Manski (2004) suggested shorter confidence in-
tervals that (asymptotically) uniformly cover each point in the identification
region, rather than the entire region, with at least a prespecified probability
1 − α. Chernozhukov, Hong, and Tamer (2002) were the first to address the
problem of construction of confidence sets for identification regions of para-
meters obtained as the solution of the minimization of a criterion function.
They provided methods to construct confidence sets that cover the entire iden-
tification region with probability asymptotically equal to 1 − α, as well as con-
fidence sets that asymptotically cover each point in the identification region
with at least probability 1 − α� They also developed resampling methods to
implement these procedures. Romano and Shaikh (2006) analyzed the same
problem and proposed various subsampling procedures. Andrews, Berry, and
Jia (2004) considered economic models of entry in which the equilibrium con-
ditions place a set of inequality restrictions on the parameters of the model.
These restrictions may only allow the researcher to identify a set of parame-
ter values consistent with the observable data. They suggested a procedure to
obtain confidence regions that asymptotically cover the identified set with at
least probability 1 − α by looking directly at the distribution of the inequality
constraints. Pakes, Porter, Ho, and Ishii (2005) considered single agent and
multiple agent structural models in which again equilibrium conditions impose
moment inequality restrictions on the parameters of interest. They suggested a
conservative specification test for the value of the estimated parameters. Rosen
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(2006) considered related models in which the parameter of interest is partially
identified by a finite number of moment inequalities. He established a connec-
tion between these models and the literature on multivariate one-sided hy-
pothesis tests and showed that for this class of models, conservative confidence
sets can be constructed by inverting a statistic that tests the hypothesis that a
given element of the parameter space satisfies the restrictions of the model.
Guggenberger, Hahn, and Kim (2006) further explored specification tests for
parameter vectors obtained as the solution of moment inequalities. Molinari
(2008b) considered misclassification models in which the identification region
for the distribution of the misclassified variable can be calculated using a non-
linear programming estimator, the constraints of which depend on parame-
ters that can be consistently estimated. She proposed conservative confidence
sets given by the union of the identification regions obtained by replacing the
estimated parameters with the elements of their Wald confidence ellipsoid.
Galichon and Henry (2006) proposed a specification test for partially identi-
fied structural models based on an extension of the Kolmogorov–Smirnov test
for Choquet capacities.

2. HYPOTHESIS TESTING AND CONFIDENCE COLLECTIONS

2.1. Preliminaries

We begin this section with some preliminary definitions that prove useful
in what follows.6 Throughout the paper (with a few exceptions), we reserve
the use of capital Latin letters to sets and SVRVs; we use lowercase Latin
letters for random variables and boldface lowercase Latin letters for random
vectors. We denote sets of parameters by capital Greek letters, scalar val-
ued parameters by lowercase Greek letters, and vector valued parameters by
boldface lowercase Greek letters. We denote by ‖ · ‖ the Euclidean norm,
by 〈·� ·〉 the inner product in �d� by Sd−1 = {p ∈ �d :‖p‖ = 1} the unit sphere
in �d , and by C(Sd−1) the set of continuous functions from Sd−1 to �. For
h ∈ C(Sd−1), we let ‖h‖C(Sd−1) = supp∈Sd−1 |h(p)| be the C(Sd−1) norm. We de-
note (g)+ ≡ max(0� g) and (g)− ≡ max(0�−g).
Set Valued Random Variables, Distance Functions, and Support Functions

Let (Ω�A�μ) be a probability space. Let �d denote the Euclidean space,
equipped with the Euclidean norm, and let K(�d) be the collection of all non-
empty closed subsets of �d .7 Denote by Kk(�d) the set of nonempty compact

6Beresteanu and Molinari (2006) provided a succinct presentation of the theory of SVRVs, fol-
lowing closely the treatment in Molchanov (2005) (limit theorems for SVRVs are also discussed in
Li, Ogura, and Kreinovich (2002)). The first self-contained treatment of the mathematical theory
of SVRVs was given by Matheron (1975).

7The theory of SVRVs generally applies toK(X), the space of closed subsets of a Banach space
X (e.g., Molchanov (2005)). For the purposes of this paper it suffices to consider X = �d , which
simplifies the exposition.
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subsets of �d , and byKkc(�d) the set of nonempty compact and convex subsets
of �d .

An SVRV is a measurable mapping F :Ω→ K(�d) that associates a set to
each point in the sample space. We can think of an SVRV as a bundle of ran-
dom variables—its selections. A formal definition follows.

DEFINITION 1: A map F :Ω→K(�d) is called a set-valued random variable
(SVRV) if for each closed subset C of �d , F−1(C)= {ω ∈Ω :F(ω) ∩C �= ∅} ∈
A. For any SVRV F , a (measurable) selection of F is a random vector f (taking
values in �d) such that f(ω) ∈ F(ω) μ-a.s. We denote by S(F) the set of all
selections from F .

To measure the distance from one set to another, the distance between sets,
and the norm of a set, we use the following:

DEFINITION 2: Let A and B be two subsets of �d .
(a) The directed Hausdorff distance from A to B (or lower Hausdorff hemi-

metric) is denoted

dH(A�B)= sup
a∈A

inf
b∈B

‖a − b‖�

(b) The Hausdorff distance8 between A and B (or Hausdorff metric) is de-
noted

H(A�B)= max{dH(A�B)�dH(B�A)}�
(c) The Hausdorff norm of a set is denoted

‖A‖H =H(A� {0})= sup{‖a‖ : a ∈A}�
To represent sets as elements of a functional space, we use the support func-

tion:

DEFINITION 3: Let F ∈ K(�d). Then the support function of F at p ∈ �d ,
denoted s(p�F), is given by s(p�F)= supf∈F〈p� f〉.
Expectation of SVRVs

Denote by L1 = L1(Ω��d) the space of A-measurable random variables with
values in �d such that the L1-norm ‖ξ‖1 = E[‖ξ‖] is finite. For an SVRV
F defined on (Ω�A) the family of all integrable selections of F is given by

8If A and B are unbounded subsets of �d , H(A�B) may be infinite. However, (Kk(�d),
H(·� ·)) is a complete and separable metric space (Li, Ogura, and Kreinovich (2002, Theo-
rems 1.1.2 and 1.1.3)). The same conclusion holds for (Kkc(�d)�H(·� ·)).
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S1(F) = S(F) ∩ L1. Below we define integrably bounded SVRVs, and we de-
fine the Aumann expectation (Aumann (1965)) of an SVRV F , denoted E[F].
We reserve the notation E[·] for the expectation of random variables and ran-
dom vectors.

DEFINITION 4: An SVRV F :Ω → K(�d) is called integrably bounded if
‖F‖H = sup{‖f‖ : f ∈ F} has a finite expectation.

DEFINITION 5: The Aumann expectation of an SVRV F is given by

E[F] =
{∫

Ω

fdμ : f ∈ S1(F)

}
�

where
∫
Ω

fdμ is taken coordinatewise. If F is integrably bounded, then

E[F] =
{∫

Ω

fdμ : f ∈ S(F)
}
�

Clearly, since S(F) is nonempty (Aumann (1965); see also Li, Ogura, and
Kreinovich (2002, Theorem 1.2.6)), the Aumann expectation of an integrably
bounded SVRV is nonempty. Moreover, if F is an integrably bounded random
compact set on a nonatomic probability space or if F is an integrably bounded
random convex compact set, then E[F] is convex and coincides with E[coF],
and E[s(p�F)] = s(p�E[F]) (Artstein (1974)).

Linear Transformations

Sections 3 and 4 discuss examples of partially identified parameters whose
identification region is given by an Aumann expectation of SVRVs that can be
constructed from observable random variables. Below we introduce novel gen-
eral procedures based on the Hausdorff distance and on the directed Haus-
dorff distance to conduct inference for these identification regions and their
subsets. Before getting to the details of our procedure, we observe that given a
nonrandom finite matrix R of dimension l×d, if {F�Fi : i ∈ N} are independent
and identically distributed (i.i.d.) nonempty, compact valued SVRVs inKk(�d)
with E[‖F‖2

H]<∞ and RF = {t ∈ �l : t =Rf� f ∈ S(F)}, then {RF�RFi : i ∈ N}
are i.i.d. nonempty, compact valued SVRVs in Kk(�l) with E[‖RF‖2

H]<∞. It
then follows from Theorem A.2 and Lemma A.1 in the Appendix that

√
nH

(
1
n

n⊕
i=1

RFi�E[RF]
)

d→‖zR‖C(Sl−1)�

√
ndH

(
1
n

n⊕
i=1

RFi�E[RF]
)

d→ sup
p∈Sl−1

{zR(p)}+�
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√
ndH

(
E[RF]� 1

n

n⊕
i=1

RFi
)

d→ sup
p∈Sl−1

{−zR(p)}+�

where zR is a Gaussian random system with E[zR(p)] = 0 for all p ∈ Sl−1 and
E[zR(p)zR(q)] = E[s(R′p�F)s(R′q�F)] − E[s(R′p�F)]E[s(R′q�F)] for all
p�q ∈ Sl−1. In particular, R can be chosen to select specific components of
the partially identified parameter vector (or linear functions of such compo-
nents) so as to conduct inference on them. Below, for simplicity, we assume
that R = I (the identity matrix). The results for R �= I involve a straightfor-
ward modification.

2.2. Inference Based on the Hausdorff Distance

Hypothesis Testing

Given a nonempty, compact, and convex (nonrandom) set Ψ0, to test the
hypothesis

H0 : E[F] =Ψ0� HA : E[F] �=Ψ0

at a prespecified significance level α ∈ (0�1), we propose the following crite-
rion:

reject H0 if
√
nH

(
1
n

n⊕
i=1

coFi�Ψ0

)
> cα�

do not reject H0 if
√
nH

(
1
n

n⊕
i=1

coFi�Ψ0

)
≤ cα�

where cα is chosen so that

Pr
{‖z‖C(Sd−1) > cα

}= α(2.1)

and z is a Gaussian random system with E[z(p)] = 0 for all p ∈ Sd−1 and
E[z(p)z(q)] = E[s(p�F)s(q�F)] −E[s(p�F)]E[s(q�F)] for all p�q ∈ Sd−1.

Observe that the test statistic uses the Hausdorff distance between Ψ0 and
1
n

⊕n

i=1 coFi, rather than the Hausdorff distance between Ψ0 and 1
n

⊕n

i=1 Fi.
Using

⊕n

i=1 coFi to construct the test statistic greatly simplifies the compu-
tations, because the calculation of the Hausdorff distance between convex sets
has been widely studied in computational geometry, and fast algorithms are
easily implementable. At the same time, by Shapley–Folkman’s theorem (Starr
(1969)),H( 1

n

⊕n

i=1 coFi� 1
n

⊕n

i=1 Fi) goes to zero9 at the rate 1
n
. Hence, by Theo-

rem A.1 in the Appendix, 1
n

⊕n

i=1 coFi is a consistent estimator of E[F], and by

9Minkowski averaging SVRVs which are compact valued but not necessarily convex is asymp-
totically “convexifying,” as noted by Artstein and Vitale (1975).
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Theorem A.2,
√
nH( 1

n

⊕n

i=1 coFi�E[F]) and
√
nH( 1

n

⊕n

i=1 Fi�E[F]) have the
same asymptotic distribution. In what follows, we use F̄n to denote 1

n

⊕n

i=1 coFi.
Since the limiting distribution of our test statistics depends on parameters to

be estimated, we obtain the critical values using the following empirical boot-
strap procedure:

ALGORITHM 2.1:
1. Generate a bootstrap sample of size n, {F∗

i : i = 1� � � � � n}, by drawing a
random sample from the joint empirical distribution of {Fi : i = 1� � � � � n} with
replacement.

2. Compute

r∗n ≡ √
nH(F̄∗

n � F̄n)�(2.2)

3. Use the results of b repetitions of Steps 1 and 2 to compute the empirical
distribution function of r∗n at a point t, denoted by Jn(t).

4. Estimate the quantile cα defined in equation (2.1) by

ĉαn = inf{t :Jn(t)≥ 1 − α}�(2.3)

The results of Giné and Zinn (1990), along with an application of the con-
tinuous mapping theorem, guarantee the validity of this bootstrap procedure.
In particular, the following result holds:

PROPOSITION 2.1: Let {F�Fi : i ∈ N} be i.i.d. nonempty, compact valued
SVRVs such that E[‖F‖2

H] < ∞. Then r∗n
d→‖z‖C(Sd−1), where r∗n is defined

in equation (2.2) and z is a Gaussian random system with E[z(p)] = 0 for
all p ∈ Sd−1 and with covariance kernel E[z(p)z(q)] = E[s(p�F)s(q�F)] −
E[s(p�F)]E[s(q�F)] for all p�q ∈ Sd−1. If in addition Var(z(p)) > 0 for each
p ∈ Sd−1, then ĉαn = cα + op(1), where ĉαn is defined in (2.3).

A consistent estimator of the critical value cα can be alternatively obtained
using the following procedure. Simulate the distribution of the supremum of a
Gaussian random system with mean function equal to zero for each p ∈ Sd−1

and covariance kernel equal to

γ̂(p�q)= 1
n

n∑
i=1

s(p�Fi)s(q�Fi)− 1
n

n∑
i=1

s(p�Fi)
1
n

n∑
i=1

s(q�Fi)

for all p�q ∈ Sd−1. Observe that the supremum is to be taken over p ∈ Sd−1,
hence over a known set (the unit sphere) which does not need to be esti-
mated. It then follows from the strong law of large numbers in Banach spaces
of Mourier (1955) that

γ̂(·� ·) a�s�→E[s(·�F)s(·�F)] −E[s(·�F)]E[s(·�F)]�
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By the same argument as in the proof of Proposition 2.1, if Var(z(p)) > 0 for
each p ∈ Sd−1, the critical values of the simulated distribution consistently esti-
mate the critical values of ‖z‖C(Sd−1).

We now show that our test is consistent against any fixed alternative hypoth-
esis in HA.

THEOREM 2.2: Let {F�Fi : i ∈ N} be i.i.d. nonempty, compact valued SVRVs
such that E[‖F‖2

H]<∞, and let ΨA be a nonempty, compact, and convex valued
set such that E[F] =ΨA �=Ψ0. Let Var(z(p)) > 0 for each p ∈ Sd−1. Then

lim
n→∞

Pr{√nH(F̄n�Ψ0) > ĉαn} = 1�

We conclude the discussion of our test by determining its power against lo-
cal alternatives at distance (proportional to) 1/

√
n from the null hypothesis.

Suppose we are interested in the power of our test of H0 against a sequence of
nonempty, compact, and convex alternative sets {ΨAn},

ΨAn ∈Kkc(�d) : ΨAn ⊕ 1√
n
Δ1 =Ψ0 ⊕ 1√

n
Δ2�(2.4)

where Δ1 and Δ2 are nonrandom nonempty, compact, and convex sets for
which there exists a nonempty, compact, and convex set Δ3 such that Ψ0 =
Δ1 ⊕ Δ3. Let κ ≡ H(Δ1�Δ2) < ∞ and observe that by the properties of the
Hausdorff distance between two sets10

√
nH(ΨAn�Ψ0)= √

nH

(
ΨAn ⊕ 1√

n
Δ1�Ψ0 ⊕ 1√

n
Δ1

)
= κ�(2.5)

Clearly, for larger values of κ, the local alternatives get farther away from the
null, with a resulting increase in the power of the test.

This choice of local alternatives allows us to consider a large class of de-
viations from the null hypothesis. It encompasses the case in which Δ1 = {0},
Δ2 �= {0}, and the sets ΨAn shrink (i.e., the null is a subset of the true iden-
tification region) and/or shift to become equal to Ψ0, and the case in which
Δ1 �= {0}, Δ2 = {0}, and the sets ΨAn enlarge (i.e., the null is a superset of the
true identification region) and/or shift to become equal to Ψ0.

The following theorem gives the asymptotic distribution of our test under
these local alternatives and establishes its local asymptotic unbiasedness.

THEOREM 2.3: Let {F�Fi : i ∈ N} be i.i.d. nonempty, compact valued SVRVs
such that E[‖F‖2

H]<∞, let Ψ0 be a nonempty, compact, and convex valued set,
and let {ΨAn} be the sequence of sets defined in (2.4). Then

√
nH(F̄n�Ψ0)

d→‖w‖C(Sd−1)

10See, for example, DeBlasi and Iervolino (1969).
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under ΨAn, where w is a Gaussian random system with E[w(p)] = s(p�Δ2) −
s(p�Δ1) for all p ∈ Sd−1 and E[w(p)w(q)] = E[s(p�F)s(q�F)] − E[s(p�
F)]E[s(q�F)] for all p�q ∈ Sd−1. Moreover, under ΨAn the test is asymptotically
locally unbiased, that is,

lim
n→∞

Pr{√nH(F̄n�Ψ0) > ĉαn} ≥ α�

Confidence Collections

The “confidence collection” is the collection of all sets that, when specified
as null hypothesis for the true value of the population identification region,
cannot be rejected by our test. We denote this collection by CCn�1−α. The confi-
dence collection is based on exploiting the duality between confidence regions
and hypothesis tests that is of familiar use for point-identified models, and it
has the property that asymptotically the set E[F] is a member of such collection
with a prespecified confidence level 1 −α. Inverting the test statistic described
above, we construct CCn�1−α as

CCn�1−α = {Ψ̃ ∈Kkc(�d) :
√
nH(F̄n� Ψ̃ )≤ ĉαn}�

where ĉαn is defined in equation (2.3). Hence if the law of ‖z‖C(Sd−1) is continu-
ous,

lim
n→∞

Pr{E[F] ∈ CCn�1−α} = 1 − α�

In practice, it can be difficult to characterize all the sets that belong to the
confidence collection. However, the union of all sets in CCn�1−α can be calcu-
lated in a particularly simple way. The following theorem shows how.

THEOREM 2.4: Let Un =⋃{Ψ̃ : Ψ̃ ∈ CCn�1−α} and Bĉαn = {b ∈ �d :‖b‖ ≤ ĉαn√
n
}.

Then Un = F̄n ⊕Bĉαn .

An interesting consequence of Theorem 2.4 is that the union of all sets in
CCn�1−α is also included in CCn�1−α and thus represents the largest set that can-
not be rejected as a null hypothesis.

2.3. Inference Based on the Directed Hausdorff Distance

Hypothesis Testing

Suppose that a researcher wants to test whether a certain set of values is
contained in the identification region. To accommodate this case, we propose
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the following hypothesis, which specifies a subset of the identification region11:

H0 :Ψ0 ⊆ E[F]� HA :Ψ0 � E[F]�
where Ψ0 is a nonempty, compact, and convex (nonrandom) set. We call this
an inclusion test. Using the triangle inequality and the fact that under the null
hypothesis dH(Ψ0�E[F])= 0, we obtain

dH(Ψ0� F̄n) ≤ dH(Ψ0�E[F])+ dH(E[F]� F̄n)

= sup
p∈Sd−1

{
−
(

1
n

n∑
i=1

s(p� coFi)−E[s(p�F)]
)}

+
�

where the equality follows from Lemma A.1 in the Appendix. Under the same
assumptions of Theorem A.2, it follows that

√
ndH(E[F]� F̄n) d→ sup

p∈Sd−1

{−z(p)}+�(2.6)

where z is a Gaussian random system with E[z(p)] = 0 for all p ∈ Sd−1 and
E[z(p)z(q)] =E[s(p�F)s(q�F)] −E[s(p�F)]E[s(q�F)] for all p�q ∈ Sd−1.

Hence we can use the criterion

reject H0 if
√
ndH(Ψ0� F̄n) > c̃α�

do not reject H0 if
√
ndH(Ψ0� F̄n)≤ c̃α�

where c̃α is chosen so that

Pr
{

sup
p∈Sd−1

{−z(p)}+ > c̃α
}

= α�(2.7)

By construction, denoting by ̂̃cαn an estimator of c̃α obtained through a boot-
strap procedure similar to the one in Algorithm 2.1,

lim
n→∞

Pr{√ndH(Ψ0� F̄n) >̂̃cαn} ≤ lim
n→∞

Pr
{√
ndH(E[F]� F̄n) >̂̃cαn}= α�

Because Ψ0 = E[F] is contained in H0, our test’s significance level is asymptot-
ically equal to α.

Our testing procedure preserves the property of rejecting a false null hypoth-
esis with probability approaching 1 as the sample size increases. In particular,
we have the following result:

11For the case that one wants to test H0 :E[F] ⊆ Ψ0 against HA :E[F] � Ψ0, similar algebra to
what follows in this section gives that we can use the criterion reject H0 if

√
ndH(F̄n�Ψ0) > c̆α, do

not reject H0 if
√
ndH(F̄n�Ψ0)≤ c̆α, where c̆α is chosen so that Pr{supp∈Sd−1 {z(p)}+ > c̆α} = α and

supp∈Sd−1 {z(p)}+ is the limiting distribution of
√
ndH(F̄n�E[F]).
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COROLLARY 2.5: Let {F�Fi : i ∈ N} be i.i.d. nonempty, compact valued SVRVs
such that E[‖F‖2

H]<∞ and suppose thatΨ0 � E[F]. Let α< 1
2 and Var(z(p)) >

0 for each p ∈ Sd−1, where z(p) is defined in equation (2.6). Then

lim
n→∞

Pr{√ndH(Ψ0� F̄n) >̂̃cαn} = 1�

The asymptotic distribution of this test under local alternatives at distance
(proportional to) 1/

√
n from the null hypothesis follows from Theorem 2.3. In

particular, suppose we are interested in the power of our test of H0 against a
sequence of nonempty, compact, and convex alternative sets {ΨAn},

ΨAn ∈Kkc(�d) : ΨAn ⊕ 1√
n
Δ1 =Ψ0�

where Δ1 is a nonrandom nonempty, compact, and convex set for which there
exists a nonempty, compact and convex set Δ3 such that Ψ0 = Δ1 ⊕Δ3. Then

√
ndH(Ψ0� F̄n)

d→ sup
p∈Sd−1

{−w(p)}+(2.8)

under ΨAn, where w is a Gaussian random system with E[w(p)] = −s(p�Δ1)
for all p ∈ Sd−1 and E[w(p)w(q)] = E[s(p�F)s(q�F)] − E[s(p�F)]E[s(q�F)]
for all p�q ∈ Sd−1. When additionallyΔ1 is such that s(p�Δ1)≥ 0 for all p ∈ Sd−1,
so thatΨAn ⊆Ψ0, it is easy to see that the test is asymptotically locally unbiased.
We return to the implications of this result when we discuss the inversion of this
test to obtain confidence sets.

Directed Confidence Collections

The “directed confidence collection” is the collection of all sets that, when
specified as a null hypothesis for a possible subset of the population identifica-
tion region, cannot be rejected by our test. The term “directed” is to emphasize
the connection with the test statistic that uses the directed Hausdorff distance.
We denote this collection by DCCn�1−α:

DCCn�1−α = {Ψ̃ ∈Kkc(�d) :
√
ndH(Ψ̃ � F̄n)≤̂̃cαn}�

If the law of supp∈Sd−1{−z(p)}+ is continuous, then for each Ψ̃ ⊆ E[F],

lim
n→∞

Pr{Ψ̃ ∈ DCCn�1−α} ≥ 1 − α

with equality for Ψ̃ = E[F]. Similarly to the result presented in Theorem 2.4,
the union of the sets in DCCn�1−α can be calculated in a particularly simple way
and it represents the largest set that cannot be rejected as a null hypothesis in
the inclusion test.



778 A. BERESTEANU AND F. MOLINARI

COROLLARY 2.6: Let DUn = ⋃{Ψ̃ : Ψ̃ ∈ DCCn�1−α} and B̂̃cαn = {b ∈ �d :
‖b‖ ≤ ̂̃cαn√

n
}. Then DUn = F̄n ⊕B̂̃cαn ⊂ Un.

Confidence Sets

Chernozhukov, Hong, and Tamer (2007) proposed criterion-function based
(QLR-type) confidence sets that cover the true identification region with prob-
ability asymptotically equal to 1 − α. We show here that for the class of prob-
lems addressed in this paper, our Wald-type confidence set DUn possesses
(asymptotically) the same coverage property.

PROPOSITION 2.7: Let {F�Fi : i ∈ N} be i.i.d. nonempty, compact valued
SVRVs such that E[‖F‖2

H]<∞. Then

lim
n→∞

Pr{E[F] ⊆DUn} = 1 − α�

This proposition also implies that our results for the local power of the in-
clusion test based on the directed Hausdorff distance can be translated into
results for coverage of a false local region. In particular, let

Ψ0n = E[F] ⊕ 1√
n
Δ1�

Then
√
ndH(Ψ0n� F̄n)

d→ supp∈Sd−1{−w(p)}+, where the Gaussian process w(·)
is defined after equation (2.8). Hence it follows from the discussion after
equation (2.8) that whenever Δ1 is such that s(p�Δ1) ≥ 0 for all p ∈ Sd−1,
limn→∞ Pr{√ndH(Ψ0n� F̄n) >̂̃cαn} ≥ α, and in this case

lim
n→∞

Pr{Ψ0n ⊆DUn} ≤ 1 − α�

Testing Procedure and Confidence Sets for Points in the Identification Region

The inferential approach in this section targets the entire identification re-
gion of a partially identified population feature, and provides asymptotically
exact significance level with which to test hypotheses and construct confidence
collections. However, there are applications in which the researcher is inter-
ested in testing hypotheses and constructing confidence sets for the “true”
value of the population feature, following the insight of Imbens and Manski
(2004). For this case, our test statistic based on the directed Hausdorff distance
allows one to conduct conservative tests of hypotheses and construct conserv-
ative confidence sets that asymptotically cover each point in the identification
region with a prespecified probability. In particular, given a real valued vector
ψ0 and a prespecified significance level α ∈ (0�1), suppose that one wants to
test H0 :ψ0 ∈ E[F] (i.e., {ψ0} ⊆ E[F]) against HA :ψ0 /∈ E[F] (i.e., {ψ0} � E[F]).
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Then one can reject H0 against HA if
√
ndH({ψ0}� F̄n) > c̃α, and fail to reject

otherwise, where c̃α is given in equation (2.7). This test preserves the property
of rejecting a false null hypothesis with probability approaching 1 as the sam-
ple size increases. The confidence set DUn introduced in Corollary 2.6 has
the property that for each ψ̃ ∈ E[F], limn→∞ Pr{ψ̃ ∈ DUn} ≥ 1 − α. Clearly
this confidence set is conservative, as illustrated by Imbens and Manski (2004,
Lemma 1), because DUn covers the entire identification region with probabil-
ity asymptotically equal to 1 − α.

3. INFERENCE FOR INTERVAL-IDENTIFIED PARAMETERS

The results of Section 2 can be extended to the entire class of models that
give interval bounds (in �) for the parameter of interest (Manski (2003) gave
a comprehensive presentation of a large group of such problems). The only
requirement is that there is joint asymptotic normality of the endpoints of the
interval and that the covariance matrix of the limiting distribution can be con-
sistently estimated. This result is useful in practice, as many applications of
partially identified models fall into this category.12 It also helps us relate the
theory of SVRVs to the well-known laws of large numbers (LLNs) and central
limit theorems (CLTs) for scalar valued random variables. Here we specialize
the limiting distribution of our test statistics for the case of interval identifi-
cation, and detail a step-by-step procedure to test hypothesis and construct
confidence collections.

Suppose that the population identification region for a scalar valued parame-
ter of interest is given by the interval Ψ ≡ [ψL�ψU ]. Let Ȳn ≡ [ȳnL� ȳnU ] denote
the estimated identification region and denote by an a growing sequence (at a
possibly nonparametric rate). Then if

an

(
ȳnL −ψL
ȳnU −ψU

)
d→
(
z−1

z1

)
∼N(0�Π)�(3.1)

simple algebra and the continuous mapping theorem imply that

anH(Ȳn�Ψ)= an max{|ȳnL −ψL|� |ȳnU −ψU |} d→max{|z−1|� |z1|}�(3.2)

andH(Ψ� Ȳn)(3.3)

= an max{(ȳnL −ψL)+� (ȳnU −ψU)−} d→max{(z−1)+� (z1)−}�
The result in equation (3.3) allows us to establish the asymptotic equivalence
of the square of our test statistic based on the directed Hausdorff distance and

12A few examples include Manski, Sandefur, McLanahan, and Powers (1992), Hotz, Mullin,
and Sanders (1997), Manski and Nagin (1998), Ginther (2000), Manski and Pepper (2000), Pep-
per (2000, 2003), Haile and Tamer (2003), Scharfstein, Manski, and Anthony (2004), Gonzalez-
Luna (2005), Molinari (2008a), Dominitz and Sherman (2006).
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the criterion-function based inferential statistic proposed by Chernozhukov,
Hong, and Tamer (2007). While the result that we give is mathematically simple
and does not need a formal proof, we view it as conceptually important. It
establishes, for the interval-identified case, an asymptotic equivalence result
which corresponds, in the point-identified case, to the asymptotic equivalence
between the distributions of the QLR and the Wald test statistics. We therefore
place this result in a formal theorem.

THEOREM 3.1: Let Ψ ≡ [ψL�ψU ] and Ȳn ≡ [ȳnL� ȳnU ]. Denote by an a growing
sequence. Then if equation (3.1) holds,

a2
n[dH(Ψ� Ȳn)]2 d→max{(z−1)

2
+� (z1)

2
−}�(3.4)

a2
n sup
ψ∈Ψ

[(ȳnL −ψ)2
+ + (ȳnU −ψ)2

−] d→max{(z−1)
2
+� (z1)

2
−}�(3.5)

The result in equation (3.5) is due to Chernozhukov, Hong, and Tamer (2002).

Replacing Π with a consistent estimator Π̂, the quantiles of the cumulative
distribution function of each of the random variables appearing on the right-
hand side of the limits in equations (3.2) and (3.3) can be easily estimated using
the following procedure, which also details how to test the hypothesis aboutΨ .

Algorithm for Estimation of the Critical Values and Hypothesis Testing

1. Suppose H0 :Ψ =Ψ0, HA :Ψ �=Ψ0. Then:
(a) Draw a large random sample of pairs (ẑ−1� ẑ1) from the distribution

N(0� Π̂). For each pair compute r∗ = max{|ẑ−1|� |ẑ1|}.
(b) Use the results of step (a) to compute the empirical distribution function

of r∗, Ĵ(·).
(c) Estimate the quantile cα : Pr{max{|z−1|� |z1|}> cα} = α by

ĉαn = inf{t : Ĵ(t)≥ 1 − α}�
(d) Calculate anH(Ȳn�Ψ0)= an max{|ȳnL −ψ0L|� |ȳnU −ψ0U |}.
(e) If anH(Ȳn�Ψ0) > ĉαn, reject H0 at the 100α% level; otherwise fail to re-

ject.
2. Suppose H0 :Ψ0 ⊆Ψ , HA :Ψ �Ψ0. Then:
(a) Draw a large random sample of pairs (ẑ−1� ẑ1) from the distribution

N(0� Π̂). For each pair compute r̃∗ = max{(ẑ−1)+� (ẑ1)−}.
(b) Use the results of step (a) to compute the empirical distribution function

of r̃∗, ̂̃J(·).
(c) Estimate the quantile c̃α : Pr{max{(z−1)+� (z1)−}> c̃α} = α by

̂̃cαn = inf{t :̂̃J(t)≥ 1 − α}�
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(d) Calculate andH(Ψ0� Ȳn)= an max{(ȳnL −ψ0L)+� (ȳnU −ψ0U)−}.
(e) If andH(Ψ0� Ȳn) > ̂̃cαn, reject H0 at the 100α% level, otherwise fail to

reject.

Construction of CCn�1−α, DCCn�1−α, Un, and DUn, and Choice Among Them

In the case of interval-identified parameters, CCn�1−α, DCCn�1−α, Un, and DUn

are extremely easy to construct. In particular

CCn�1−α =
{
[ψ0L�ψ0U ] :ψ0L ≤ψ0U�ψ0L ∈

[
ȳnL − ĉαn

an
� ȳnL + ĉαn

an

]
�

ψ0U ∈
[
ȳnU − ĉαn

an
� ȳnU + ĉαn

an

]}
�

DCCn�1−α =
{
[ψ0L�ψ0U ] : ȳnL −

̂̃cαn
an

≤ψ0L ≤ψ0U ≤ ȳnU +
̂̃cαn
an

}
�

Un =
[
ȳnL − ĉαn

an
� ȳnU + ĉαn

an

]
�

DUn =
[
ȳnL −

̂̃cαn
an
� ȳnU +

̂̃cαn
an

]
�

When the researcher is not comfortable conjecturing the entire identification
region of the parameter of interest, but only a subset of it, DUn is the proper
confidence set to report. This set, obtained through the inversion of the Wald
statistic based on the directed Hausdorff distance, answers the question “What
are the values that cannot be rejected as subsets of the identification region,
given the available data and the maintained assumptions?”

When the researcher is interested in answering the question “What are the
sets that can be equal to the entire identification region of the parameter of in-
terest, given the available data and the maintained assumptions?,” the proper
confidence statement to make is based on CCn�1−α. This is the collection of sets
obtained through the inversion of the Wald statistic based on the Hausdorff
distance. While DUn is a smaller confidence set than Un (the union of the in-
tervals in CCn�1−α), it is important to observe that not all proper subsets of DUn

are elements of CCn�1−α. A proper subset of DUn might be rejected as a null
hypothesis for the entire identification region, for example, because it might
be too small and therefore not be an element of CCn�1−α.

EXAMPLE—Population Mean With Interval Data: Suppose that one is in-
terested in the population mean of a random variable y , E(y). Suppose fur-
ther that one does not observe the realizations of y , but rather the real-
izations of two real valued random variables yL, yU such that Pr{yL ≤ y ≤
yU} = 1. Manski (1989) showed that [E(yL)�E(yU)] is the sharp bound for
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E[y]. Hence the results in equations (3.2) and (3.3) directly apply here, with
Ȳn = [ 1

n

∑n

i=1 yiL�
1
n

∑n

i=1 yiU ]. To exemplify our approach in the simplest possi-
ble setting, we rederive the result in equations (3.2) and (3.3) using the lan-
guage of SVRVs.

Let Y = [yL� yU]. Assume that {(yiL� yiU)}ni=1 are i.i.d. random vectors, let
Yi = [yiL� yiU ], and denote Ȳn ≡ 1

n

⊕n

i=1Yi. Then we have the following result:

THEOREM 3.2: Let {(yiL� yiU)}ni=1 be i.i.d. real valued random vectors such that
Pr{yiL ≤ yi ≤ yiU} = 1 and E(|yL|) <∞, E(|yU |) <∞.

(i) Then E[Y ] = [E(yL)�E(yU)] and H(Ȳn�E[Y ]) a�s�→0 as n→ ∞.
(ii) If E(y2

L) <∞, E(y2
U) <∞, then

√
nH(Ȳn�E(Y))

d→max{|z−1|� |z1|}�
√
ndH(E(Y)� Ȳn)

d→max{(z−1)+� (z1)−}�
where (

z−1

z1

)
∼N

([
0
0

]
�

[
Var(yL) Cov(yL� yU)

Cov(yL� yU) Var(yU)

])
�

4. BEST LINEAR PREDICTION WITH INTERVAL OUTCOME DATA

Suppose that one is interested in the parameters of the best linear predictor
(BLP) of a random variable y conditional on a random vector x. Suppose that
one does not observe the realizations of y , but rather the realizations of two
real valued random variables yL, yU such that Pr{yL ≤ y ≤ yU} = 1. We remark
that best linear prediction finds the linear function that minimizes square loss,
but does not impose that such linear function is best nonparametric (Manski
(2003, pp. 56–58)). In other words, we are not restricting the conditional ex-
pectation of y given x to be linear.

Let Y = [yL� yU ]. Throughout this section, we maintain the following as-
sumption:

ASSUMPTION 4.1: Let (y� yL� yU�x) be a random vector in � × � × � × �d

such that Pr{yL ≤ y ≤ yU} = 1. The researcher observes a random sample
{(yiL� yiU�xi) : i= 1� � � � � n} from the joint distribution of (yL� yU�x).

The proofs of the propositions and theorems for this section, given in the Ap-
pendix, consider the general case that x ∈ �d . To simplify the notation, in this
section we introduce ideas restricting attention to the case that x ∈ � (though
our assumptions are written for the general case d ≥ 1). Let

Σ≡
[

1 E(x)

E(x) E(x2)

]
� Σ̂n ≡

[
1 x̄

x̄ x2

]
�
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where x̄= 1
n

∑n

i=1 xi, x2 = 1
n

∑n

i=1 x
2
i . Assume the following:

ASSUMPTION 4.2: E(|yL|) <∞, E(|yU |) <∞, E(|yLxk|) <∞, and E(|yU ×
xk|) <∞, k= 1� � � � � d.

ASSUMPTION 4.3: Σ is of full rank.

Then in the point-identified case the population best linear predictor [θ1� θ2]
solves the equations

E(y)= θ1 + θ2E(x)�

E(xy)= θ1E(x)+ θ2E(x
2)�

and its sample analog [θ̂1� θ̂2] solves the equations

1
n

n∑
i=1

yi = θ̂1 + θ̂2
1
n

n∑
i=1

xi�

1
n

n∑
i=1

xiyi = θ̂1
1
n

n∑
i=1

xi + θ̂2
1
n

n∑
i=1

x2
i �

In the interval outcomes case Y is an SVRV. We first introduce some addi-
tional notation to accommodate set valued variables. Let

G(ω)=
{[

y(ω)

x(ω)y(ω)

]
: y(ω) ∈ Y(ω)

}
�(4.1)

LetGi be the mapping defined as in (4.1) using (yiL� yiU�xi). Lemma A.4 in the
Appendix shows that G and Gi, i ∈ N, are SVRVs. We define the population
set valued best linear predictor as

Θ= Σ−1E[G](4.2)

=
{[
θ1

θ2

]
:
[
θ1

θ2

]
=
[

1 E(x)

E(x) E(x2)

]−1 [
E(y)

E(xy)

]
�

[
y

xy

]
∈ S1(G)

}
�

Before proceeding to deriving the estimator ofΘ and its asymptotic properties,
we show that the identification region Θ defined in (4.2) is identical to the
identification region for the BLP obtained following the approach in Manski
(2003) and denoted by ΘM :

ΘM =
{[
θM1
θM2

]
:
[
θM1
θM2

]
= arg min

∫
(y − θ1 − θ2x)

2 dη�η ∈ Pyx

}
�(4.3)
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where

Pyx = {η : Pr(yL ≤ t� x≤ x0)≥ η((−∞� t]� (−∞�x0])(4.4)

≥ Pr(yU ≤ t� x≤ x0)∀t ∈ ��∀x0 ∈ ��
η((−∞�+∞)� (−∞�x0])= Pr(x≤ x0)∀x0 ∈ �}�

PROPOSITION 4.1: Let Assumptions 4.1–4.3 hold. Let Θ and ΘM be defined,
respectively, as in (4.2) and (4.3)–(4.4). Then Θ=ΘM .

Given these preliminaries, we apply the analogy principle and define the
sample analog of Θ as

Θ̂n = Σ̂−1
n Ḡn�(4.5)

where Ḡn = 1
n

⊕n

i=1Gi.
Observe that by construction, Θ is a convex set. Lemma A.8 in the Appendix

describes further its geometry, showing that when x has an absolutely continu-
ous distribution and G is integrably bounded, Θ is a strictly convex set, that is,
it does not have a flat face. The estimated set Θ̂n is a convex polytope, because
it is given by a finite Minkowski sum of segments in �d .

Theorem 4.2 below shows that under mild regularity conditions on the mo-
ments of (yL� yU�x) as in Assumption 4.2, Θ̂n is a consistent estimator ofΘ. Un-
der the additional Assumption 4.4, this convergence occurs at the rate Op( 1√

n
).

ASSUMPTION 4.4: E(|yL|2) <∞,E(|yU |2) <∞,E(|yLxk|2) <∞, andE(|yU×
xk|2) <∞, E(|xk|4) <∞, k= 1� � � � � d.

THEOREM 4.2: Let Assumptions 4.1, 4.2, and 4.3 hold. Define Θ and Θ̂n as in
(4.2) and (4.5), respectively. Then H(Θ̂n�Θ)

a�s�→0. If in addition Assumption 4.4
holds, then H(Θ̂n�Θ)=Op( 1√

n
).

The proof of Theorem 4.2 is based on an extension of Slutsky’s theorem to
SVRVs, which we provide in Lemma A.6 in the Appendix. The rate of conver-
gence that we obtain is 1/

√
n, irrespective of whether x has a continuous or

a discrete distribution. To derive the asymptotic distribution of H(Θ̂n�Θ), we
impose an additional condition13 on the distribution of x:

13When x has a discrete distribution, the population identification regionΘ is a polytope, given
by a Minkowski sum of segments. As a result, when x is discrete, the support function of Θ is not
differentiable and the functional delta method (which we use when x is absolutely continuous)
cannot be applied. In this case, tedious calculations allow one to express the extreme points of Θ
as functions of moments of (yL� yU�x). Hence the exact asymptotic distribution of H(Θ̂n�Θ) can
be derived.
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ASSUMPTION 4.5: The distribution of x is absolutely continuous with respect to
Lebesgue measure on �d .

THEOREM 4.3: Let Assumptions 4.1, 4.3, 4.4, and 4.5 hold.
(i) Then

√
nH(Θ̂n�Θ)

d→‖v‖C(Sd) and
√
ndH(Θ� Θ̂n)

d→ supp∈Sd
{−v(p)}+,

where v is a linear function of a vector Gaussian random system with E[v(p)] = 0
for all p ∈ Sd and

E[v(p)v(q)](4.6)

=E[s(p�Σ−1G)s(q�Σ−1G)] −E[s(p�Σ−1G)]E[s(q�Σ−1G)]
− 〈ξp�κq�p〉 − 〈κp�q�ξq〉 + 〈ξp� Vp�qξq〉

for all p�q ∈ Sd . The singleton ξp = Θ ∩ {ϑ ∈ �d+1 : 〈ϑ�p〉 = s(p�Θ)}, and the
matrix Vp�q and the vector κp�q are given, respectively, in equations (A.7) and (A.8).

(ii) Assume in addition that Var(yL|x), Var(yU |x) ≥ σ2 > 0 P(x)-a.s. Then
Var(v(p)) > 0 for each p ∈ Sd , and therefore the laws of ‖v‖C(Sd) and
supp∈Sd

{−v(p)}+ are absolutely continuous with respect to Lebesgue measure, re-
spectively, on �+ and �++.

The difficulty in obtaining the asymptotic distribution of the statistics in The-
orem 4.3 can be explained by recalling how one would proceed in the point-
identified case. When Θ̂n and Θ are singletons,

√
n(θ̂n − θ)= Σ̂−1

n

√
n

([
ȳ

xy

]
− Σ̂n

[
θ1

θ2

])
�

with the second expression giving the product of a random matrix converging
in probability to a nonsingular matrix, and the sample average of a mean zero
i.i.d. random vector converging to a multivariate normal distribution. In this
case, an application of Slutsky theorem delivers the desired result. In our case,
the Aumann expectation of the random set given by Σ̂nΘ is not equal to ΣΘ,
and therefore a simple Slutsky-type result which extends the one that would
be applied in the point-identified case (and which we provide in the Appen-
dix, Lemma A.9) does not suffice for obtaining the limiting distribution of our
statistics.14 Hence, to prove Theorem 4.3 we proceed in steps. We start by look-
ing at the difference between the support functions of Θ̂n and Θ. We rewrite
these support functions as the sum of two (not necessarily independent) ele-
ments, and use Skorokhod representation theorem and an application of the
delta method for C(Sd) valued random variables to derive their joint asymp-
totic distribution. However, the use of this functional delta method requires

14For a scalar random variable σ̂n such that Pr(σ̂n ≥ 0) = 1, E[σ̂nΘ] = E[σ̂n]Θ (Molchanov
(2005, Theorem 2.1.48)) and therefore standard arguments can be applied easily.
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differentiability of the support function of Θ; Lemma A.8 in the Appendix
establishes this condition when x has an absolutely continuous distribution.15

Consider now the case that one is interested in a subset of the parameters of
the BLP and in testing linear restrictions onΘ. Let R denote a matrix of linear
restrictions, including the special case that R projects the set Θ on one of its
components.

COROLLARY 4.4: Let Assumptions 4.1, 4.3, 4.4, and 4.5 hold. Let R be a non-
random full-rank finite matrix of dimension l× (d+ 1) with l < (d+ 1).

(i) Then
√
nH(RΘ̂n�RΘ)

d→‖vR‖C(Sl−1) and
√
ndH(RΘ�RΘ̂n)

d→
supp∈Sl−1{−vR(p)}+, where vR is a linear function of a vector Gaussian random
system with E[vR(p)] = 0 for all p ∈ Sl−1 and

E[vR(p)vR(q)]
=E[s(R′p�Σ−1G)s(R′q�Σ−1G)]

−E[s(R′p�Σ−1G)]E[s(R′q�Σ−1G)]
− 〈ξR′p�κR′q�R′p〉 − 〈κR′p�R′q�ξR′q〉 + 〈ξR′p� VR′p�R′qξR′q〉�

where for p, q ∈ Sl−1 the singleton ξR′p =Θ∩ {ϑ ∈ �d+1 : 〈ϑ�R′p〉 = s(R′p�Θ)},
and the matrix VR′p�R′q and the vector κR′p�R′q are given, respectively, in equations
(A.7) and (A.8).

(ii) Let R project the setΘ on one of its components. Without loss of generality,
assume R= [ 0 0 · · · 0 1 ]. Then

√
nH(RΘ̂n�RΘ)

d→max
{|v(−R)|� |v(R)|}�

√
ndH(RΘ�RΘ̂n)

d→max
{
(v(−R))+� (v(R)−)

}
�

where v is defined in Theorem 4.3.

Often empirical researchers are particularly interested in estimation and in-
ference for a single component of the BLP parameter vector. Corollary 4.4
establishes the asymptotic distribution of our test statistics for this case. In
terms of computation of the bounds, our methodology provides substantial
advantages. In particular, without loss of generality, for i = 1� � � � � n denote
by xi = [1�xi1� � � � � xid−1�xid] = [xi1�xid] and by x̃id the residuals obtained after
projecting xd on the other covariates x1. Then the following result holds:

15Beresteanu and Molinari (2006, Corollary 5.4) gave an extremely simple approximation to
the distribution in Theorem 4.3 based on sample size adjustments which allow one to ignore the
randomness in Σ̂n at the cost of a slower rate of convergence.
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COROLLARY 4.5: Let Assumptions 4.1–4.3 hold. Let Θ̂d+1�n = {θd+1 ∈ � :
[θ1 θd+1 ]′ ∈ Θ̂n}. Then

Θ̂d+1�n = 1∑n

i=1 x̃
2
id

[
n∑
i=1

min{x̃idyiL� x̃idyiU}�
n∑
i=1

max{x̃idyiL� x̃idyiU}
]
�

The practical relevance of this result is that the calculation of the estimator
of the identification region of the BLP coefficient for a single variable can be
carried out using standard statistical packages.16 This further facilitates imple-
mentation of the bootstrap procedure that we propose in Algorithm 4.2 below.

Similarly to the discussion in Section 2.2, the asymptotic distributions of our
test statistics depend on parameters to be estimated. Hence we again obtain
the critical values using bootstrap procedures. Here we detail a bootstrap pro-
cedure for the approximation of the critical values of the limiting distribution
of

√
nH(Θ̂n�Θ). A similar procedure can be applied for

√
ndH(Θ� Θ̂n).

ALGORITHM 4.2:
1. Generate a bootstrap sample of size n, {(y∗

iL� y
∗
iU� x

∗
i ) : i = 1� � � � � n}, by

drawing a random sample from the joint empirical distribution of the vec-
tor {(yiL� yiU�xi) : i= 1� � � � � n} with replacement. Use this sample to construct
bootstrap versions of Gi and Σ̂−1

n � denoted G∗
i and Σ̂−1∗

n .
2. Compute

r∗n ≡ √
nH(Σ̂−1∗

n Ḡ∗
n� Θ̂n)�(4.7)

3. Use the results of b repetitions of Steps 1 and 2 to compute the empirical
distribution of r∗n at a point t, denoted by Jn(t).

4. Estimate the critical value cBLP
α such that Pr{‖v‖C(Sd) > c

BLP
α } = α by

ĉBLP
αn = inf{t :Jn(t)≥ 1 − α}�(4.8)

The asymptotic validity of this procedure follows by an application of the
delta method for the bootstrap. In particular, the following result holds:

PROPOSITION 4.6: Let the assumptions of Theorem 4.3(i) hold. Then r∗n
d→

‖v‖C(Sd), where r∗n is defined in equation (4.7) and the random variable v is given in
Theorem 4.3. If in addition the assumptions of Theorem 4.3(ii) hold, then ĉBLP

αn =
cBLP
α + op(1)� where ĉBLP

αn is defined in (4.8).

16We are grateful to an anonymous referee for suggesting this result. The proof of this result
is based on the Frisch–Waugh–Lovell theorem (see Magnac and Maurin (2008) for a related use
of this theorem). If one is interested in a subset of the parameters of the BLP of dimension
k ≥ 2, this theorem can again be applied, and it again yields computational advantages. Stoye
(2007) proposed computationally equivalent estimators to those in Corollary 4.5, without using
the Frisch–Waugh–Lovell theorem.
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Alternatively we could obtain consistent estimates of cBLP
α by simulating the

distribution of the supremum of a linear function of a vector Gaussian random
system with mean function equal to zero for each p ∈ Sd and with a covariance
kernel which consistently estimates the covariance kernel in (4.6). Beresteanu
and Molinari (2006, Proposition 5.6) established the asymptotic validity of this
procedure.

5. MONTE CARLO RESULTS

In this section we conduct a series of Monte Carlo experiments to evaluate
the properties of the test proposed in Section 2.2, as applied to the problem of
inference for the mean and for the parameters of the BLP with interval out-
come data. We use the same data set as in Chernozhukov, Hong, and Tamer
(2002) to conduct inference for (i) the mean (logarithm of) wage and (ii) the
returns to education for men between the ages of 20 and 50. The data are
taken from the March 2000 wave of the Current Population Survey (CPS), and
contain 13,290 observations on income and education. The wage variable is
artificially bracketed to create interval valued outcomes. A detailed descrip-
tion of the data construction procedure appears in Chernozhukov, Hong, and
Tamer (2002, Sec. 4). Denote the logarithm of the lower bound of the wage,
the logarithm of the upper bound of the wage, and the level of education in
years, by yL, yU , and x, respectively. We treat the empirical joint distribution
of (yL� yU�x) in the CPS sample as the population distribution and draw small
samples from it.

The first Monte Carlo experiment looks at the asymptotic properties of the
estimator for the population mean with interval data (see Section 3). Denote
by Y = [yL� yU ] the interval valued log of wages. The population identification
region is

Ψ0 = E(Y)= [4�4347�4�9674]�
We draw 25,000 small samples of sizes 100, 200, 500, 1000� and 2000 from the
CPS “population,” and use the statistic based on the Hausdorff distance to test
H0 : E[Y ] =Ψ0, HA : E[Y ] �=Ψ0. For each sample, we estimate the critical value
cα, α= 0�05, implementing Algorithm 2.1 with 2000 bootstrap repetitions.17 We
build the local alternatives using equation (2.4) with Δ1 = {0} and Δ2 = δ {0�5}√

n
.

More specifically, the local alternatives are defined as ΨAn(δ) = Ψ0
⊕
δ {0�5}√

n

for δ ∈ {0� 1
2 �1�2�4�8�16}, where 0�5 is the width (approximated to the first

decimal point) of E(Y).

17Fortran 90 code for computing the Minkowski sample average of intervals in � and �2,
the Hausdorff distance, and the directed Hausdorff distance between polytopes in �2, and for
implementing Algorithm 2.1 and Algorithm 4.2 is available upon request from the authors.



ASYMPTOTICS FOR PARTIALLY IDENTIFIED MODELS 789

TABLE I

REJECTION RATES OF THE TEST BASED ON THE DIRECTED HAUSDORFF DISTANCE, AND OF
THE TEST BASED ON THE HAUSDORFF DISTANCE AGAINST LOCAL ALTERNATIVES

(NOMINAL LEVEL = 0�05)−E(y)
√
nH(Ȳn�Ψ0)

Sample Size
√
ndH(Ψ0� Ȳn) δ= 0 0.5 1 2 4 8 16

n= 100 0.091 0.046 0.061 0.092 0.212 0.580 0.979 1.000
n= 200 0.076 0.047 0.058 0.087 0.200 0.577 0.985 1.000
n= 500 0.065 0.049 0.059 0.085 0.190 0.570 0.989 1.000
n= 1000 0.061 0.049 0.059 0.087 0.190 0.565 0.989 1.000
n= 2000 0.060 0.051 0.061 0.086 0.190 0.568 0.990 1.000

In terms of equation (2.5), the Hausdorff distance between the local alter-
native and the null is κ= 1

2δ. Results for this Monte Carlo experiment appear
in Table I, columns 2–8.18 The empirical size of our test (column 2) is quite
close to the nominal level of 0�05. As δ (and therefore κ) increases, the rejec-
tion rates increase for each given sample size, and for a given δ, the rejection
rates are stable across sample sizes. These results are invariant with the width
of E(Y).

We then run a similar bootstrap procedure to estimate c̃α, α= 0�05, and use
the statistic based on the directed Hausdorff distance to test H0 :Ψ0 ⊆ E[Y ],
HA :Ψ0 � E[Y ]. Table I, column 1, reports the rejection rate of this test for dif-
ferent sample sizes, when the nominal level is 0�05. For small samples (e.g.,
n= 100) the test is a little oversized. However, as n increases, this size distor-
tion decreases and the rejection rate gets close to its nominal level.19

The second Monte Carlo experiment uses both the interval valued infor-
mation on the logarithm of wage and the information about education. Here
we implement the test based on the Hausdorff distance at the 0�05 level for the
best linear predictor of the logarithm of wage given education. Figure 1 depicts
Θ, the population identification region of the parameters of the BLP given in
equation (4.2).

To trace the increase in power as we get farther away from the null, we
again use a sequence of local alternatives. The local alternatives are defined
asΘAn(δ)=Θ0 ⊕δ {(3�0�3)}√

n
for δ ∈ {0� 1

2 �1�2�4�8�16}, whereΘ0 =Θ is the poly-
tope in Figure 1, and the vector (3�0�3) gives the width (approximated to the

18We also conducted Monte Carlo experiments in which the critical value cα is obtained by
simulations. We considered both the case in which the covariance kernel was known (i.e., it was
the covariance kernel obtained from the entire CPS population) and the case in which it was
replaced by a consistent estimator. The results are comparable to those reported in Table I.

19We observe that inversion of this test leads to the construction of the confidence set DUn,
and therefore the results in Table I, column 1, can be used to infer the coverage properties of
DUn.
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FIGURE 1.—The population identification region of the parameters of the BLP.

first decimal point) of the projection of Θ on each axis. In terms of equation
(2.5), the distance between the local alternative and the null is κ= 3�015δ. We
draw 25,000 small samples of sizes 100, 200, 500, 1000, and 2000 from the CPS
population. For each sample, we estimate the critical value cα, α = 0�05, im-
plementing Algorithm 4.2 with 2000 bootstrap repetitions. The rejection rates
of the null and local alternatives are shown in Table II, columns 2–8. As the
second column of this table shows, for small samples (e.g., n= 100) the test is
a little oversized; however, as n increases, this size distortion disappears. As δ
(and therefore κ) increases, the rejection rates increase for each given sample
size.

TABLE II

REJECTION RATES OF THE TEST BASED ON THE DIRECTED HAUSDORFF DISTANCE AND OF
THE TEST BASED ON THE HAUSDORFF DISTANCE AGAINST LOCAL ALTERNATIVES

(NOMINAL LEVEL = 0�05)− BLP

√
nH(Θ̂n�Θ0)

Sample Size
√
ndH(Θ0� Θ̂n) δ= 0 0.5 1 2 4 8 16

n= 100 0.077 0.062 0.074 0.094 0.151 0.352 0.867 1.000
n= 200 0.076 0.068 0.078 0.095 0.150 0.349 0.880 1.000
n= 500 0.066 0.062 0.070 0.085 0.135 0.336 0.889 1.000
n= 1000 0.062 0.059 0.067 0.081 0.129 0.330 0.896 1.000
n= 2000 0.060 0.057 0.061 0.072 0.121 0.321 0.900 1.000
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We then run a similar bootstrap procedure to estimate c̃BLP
α , α = 0�05, and

use the statistic based on the directed Hausdorff distance to test H0 :Θ0 ⊆ Θ,
HA :Θ0 � Θ. Table II, column 1, reports the rejection rate of this test for dif-
ferent sample sizes, when the nominal level is 0�05. Again, for small samples
(e.g., n = 100) the test is a little oversized. However, as n increases, this size
distortion decreases and the rejection rate gets close to its nominal level.20

In summary, our Monte Carlo experiments show that the test described in
Section 2.2 performs well even with samples of size as small as 100. The rejec-
tion rates of the null are very close to 0�05. The power against the local alterna-
tives grows rapidly as the alternatives get far away from the null. Similarly, the
rejection rate of the test described in Section 2.3 is close to its nominal level
even with small samples.

6. CONCLUSIONS

This paper has introduced a methodology to conduct estimation and infer-
ence for partially identified population features in a completely analogous way
to how estimation and inference would be conducted if the population fea-
tures were point identified. We have shown that for a certain class of partially
identified population features, which include means and best linear predictors
with interval outcome data, and can be easily extended to parameter vectors
characterizing semiparametric binary models with interval regressor data, the
identification region is given by a transformation of the Aumann expectation
of an SVRV. Extending the analogy principle to SVRVs, we proved that this
expectation can be

√
n-consistently estimated (with respect to the Hausdorff

distance) by a transformation of the Minkowski average of a sample of SVRVs
which can be constructed from observable random variables. When the Haus-
dorff distance and the directed Hausdorff distance between the population
identification region and the proposed estimator are normalized by

√
n, these

statistics converge in distribution to different functions of the same Gaussian
process, whose covariance kernel depends on parameters of the population
identification region. We introduced consistent bootstrap procedures to esti-
mate the quantiles of these distributions.

The asymptotic distribution results have allowed us to introduce procedures
to test, respectively, whether the population identification region is equal to a
particular set or whether a certain set of values is included in the population
identification region. These test procedures are consistent against any fixed
alternative and are locally asymptotically unbiased. A Monte Carlo exercise
showed that our tests perform well even in small samples.

The test statistic based on the Hausdorff distance can be inverted to con-
struct a confidence collection for the population identification region. The con-
fidence collection is given by the collection of all sets that, when specified as

20As before, the results in Table II, column 1, can be used to infer the coverage properties of
DUn.
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a null hypothesis for the true value of the population identification region,
cannot be rejected by our test. Its main property is that (asymptotically) the
population identification region is one of its elements with a prespecified con-
fidence level 1 − α. The test statistic based on the directed Hausdorff distance
can be inverted to construct a directed confidence collection, given by the col-
lection of all sets that, when specified as a null hypothesis for a subset of values
of the population identification region, cannot be rejected by our test. Its main
property is that (asymptotically) the union of the sets comprising it covers the
population identification region with a prespecified confidence level 1−α. This
result establishes a clear connection, within the class of models studied in this
paper, between our Wald-type confidence sets, and the QLR-type confidence
sets proposed by Chernozhukov, Hong, and Tamer (2007).
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APPENDIX: LEMMAS AND PROOFS

Preliminaries

We first define notation and state limit theorems that we use throughout
the appendix. In this appendix, we use the capital Greek letters Π and Σ
to denote matrices, and we use other capital Greek letters to denote sets of
parameters. It will be obvious from the context whether a capital Greek let-
ter refers to a matrix or to a set of parameters. For a finite d × d matrix
Π and a set A ⊂ �d , let ΠA = {r ∈ �d : r = Πa�a ∈ A} and observe that
s(p�ΠA) = s(Π′p�A), where Π′ denotes the transposed matrix. We denote
the matrix norm induced by the Euclidean vector norm (i.e., the 2-norm) as
‖Π‖ = max‖p‖=1‖Πp‖ = √

λmax, where λmax is the largest eigenvalue of Π′Π.
This matrix norm is compatible with its underlying vector norm (i.e., the
Euclidean norm), so that ‖Πa‖ ≤ ‖Π‖‖a‖, and is a continuous function of the
elements of the matrix. We let �⇒ denote weak convergence.

An SVRV F :Ω→ Kkc(�d) can be represented through the support func-
tion of its realizations.21 Sublinearity of the support function implies that when
considering the support function of a set, it suffices to restrict attention to vec-
tors p ∈ Sd−1. This results in a C(Sd−1) valued random variable. Hörmander’s

21Similarly, a Minkowski average of SVRVs Fi :Ω→Kkc(�d), i= 1� � � � � n, can be represented
through the sample average of the corresponding support functions s(p�Fi), i= 1� � � � � n.

mailto:arie@econ.duke.edu
mailto:fm72@cornell.edu
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embedding theorem (Li, Ogura, and Kreinovich (2002, Theorem 1.1.12)) en-
sures that (Kkc(�d)�H(·� ·)) can be isometrically embedded into a closed con-
vex cone in C(Sd−1). In particular, for any F1, F2 :Ω→Kkc(�d),

H(F1�F2)= ‖s(·�F1)− s(·�F2)‖C(Sd−1)�(A.1)

Let B(K(�d)) be the Borel field of K(�d) with respect to the Hausdorff
metric H. Then it follows from Definition 1 that an SVRV F :Ω → K(�d)
is B(K(�d))-measurable (this result is stated in Molchanov (2005, Theo-
rem 1.2.3); for a proof see Li, Ogura, and Kreinovich (2002, Theorem 1.2.3)).
Define AF = σ{F−1(A) :A ∈ B(K(�d))} to be the σ-algebra generated by
inverse images of sets in B(K(�d)). Also let μF(A) = μ(F−1(A)) for any
A ∈ B(K(�d)) denote the distribution of F .

DEFINITION 6: Let F1 and F2 be two B(K(�d))-measurable SVRVs defined
on the same measurable spaceΩ. F1 and F2 are independent if AF1 and AF2 are
independent; F1 and F2 are identically distributed if μF1 and μF2 are identical.

Many of the results that we obtain in this paper are based on a strong law
of large numbers and on a central limit theorem for SVRVs which parallel the
classic results for random variables. We state these results here for the reader’s
convenience.

THEOREM A.1—(SLLN): Let {F�Fi : i ∈ N} be i.i.d. nonempty, integrably
bounded, compact valued SVRVs. Then

H

(
1
n

n⊕
i=1

Fi�E[F]
)

a�s�→0 as n→ ∞�

For the proof, see Artstein and Vitale (1975).

THEOREM A.2—(CLT): Let {F�Fi : i ∈ N} be i.i.d. nonempty, compact valued
SVRVs such that E[‖F‖2

H]<∞. Then

√
nH

(
1
n

n⊕
i=1

Fi�E[F]
)

d→‖z‖C(Sd−1)�

where z is a Gaussian random system with E[z(p)] = 0 for all p ∈ Sd−1 and
E[z(p)z(q)] = E[s(p�F)s(q�F)] −E[s(p�F)]E[s(q�F)] for all p�q ∈ Sd−1.

For the proof, see Giné, Hahn, and Zinn (2006).
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LEMMA A.1: Given any two compact convex sets K�L⊂ �d ,

dH(K�L)= sup
p∈Bd

{s(p�K)− s(p�L)}

= max
{

0� sup
p∈Sd−1

{s(p�K)− s(p�L)}
}
�

where Bd = {p ∈ �d :‖p‖ ≤ 1}.
PROOF: By definition, dH(K�L) = inf{c > 0 :K ⊂ L ⊕ cBd}. Let dH(K�

L) ≤ α. Then K ⊂ L ⊕ αBd , which implies that s(p�K) ≤ s(p�L ⊕ αBd) =
s(p�L) + α for all p ∈ Bd� This argument can be reversed to show that
if supp∈Bd

{s(p�K) − s(p�L)} ≤ α, then dH(K�L) ≤ α. Hence, dH(K�L) =
supp∈Bd

{s(p�K) − s(p�L)}. To see that supp∈Bd
{s(p�K) − s(p�L)} =

max{0� supp∈Sd−1{s(p�K)− s(p�L)}}, observe that if s(p�K) − s(p�L) ≤ 0 for
all p ∈ Bd , then supp∈Bd

{s(p�K)− s(p�L)} = 0 and max{0� supp∈Sd−1{s(p�K)−
s(p�L)}} = 0. (Observe incidentally that dH(K�L) = 0 and s(p�K) ≤ s(p�L)
for every p ∈ Bd if and only if K ⊆ L.) Suppose now that there exists at least
a p ∈ Bd such that s(p�K)− s(p�L) > 0. Let p̃ ∈ arg supp∈B

{s(p�K)− s(p�L)}.
Then p̃ ∈ Sd−1� To see why this is the case, suppose by contradiction that
p̃ /∈ Sd−1. Let p� = p̃

‖p̃‖ ∈ Sd−1 and observe that we are assuming ‖p̃‖< 1. Then
0 < s(p̃�K) − s(p̃�L) < 1

‖p̃‖ [s(p̃�K) − s(p̃�L)] = s(p��K) − s(p��L), which
leads to a contradiction. Q.E.D.

A.1. Proofs for Section 2.2

PROOF OF PROPOSITION 2.1: To establish the asymptotic validity of this pro-
cedure, observe that by Theorem 2.4 in Giné and Zinn (1990),

√
n

[
1
n

n∑
i=1

s(·� coF∗
i )− 1

n

n∑
i=1

s(·� coFi)

]
�⇒ z(·)

as a sequence of processes indexed by p ∈ Sd−1. Observing that for each g ∈
C(�), the functional on C(Sd−1) defined by h(x) = g(‖x‖C(Sd−1)) belongs to
C(C(Sd−1)�‖ · ‖C(Sd−1)), the result follows by the continuous mapping theorem
using standard arguments (e.g., Politis, Romano, and Wolf (1999, Chap. 1)).

The processes considered in this paper are separable with bounded real-
izations (a consequence of the fact that the support function of a bounded
set F ∈Kk(�d) is Lipschitz with Lipschitz constant ‖F‖H , (Molchanov (2005,
Theorem F.1))). Hence, it follows from Theorem 1 in Tsirel’son (1975) and
from the corollary in Lifshits (1982) that Var(z(p)) > 0 for each p ∈ Sd−1 is a
sufficient condition for the law of ‖z‖C(Sd−1) to be absolutely continuous with
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respect to Lebesgue measure on �+. The result then follows by standard argu-
ments. Q.E.D.

PROOF OF THEOREM 2.2: By triangle inequality, H(ΨA�Ψ0)≤H(F̄n�Ψ0)+
H(F̄n�ΨA). Hence,

lim
n→∞

Pr{√nH(F̄n�Ψ0) > ĉαn}
≥ lim

n→∞
Pr{√nH(ΨA�Ψ0)− √

nH(F̄n�ΨA) > ĉαn}

= lim
n→∞

Pr
{
H(ΨA�Ψ0) >H(F̄n�ΨA)+ cα + op(1)√

n

}
= Pr{H(ΨA�Ψ0) > 0} = 1�

where the second to last equality follows from Theorem A.1 and because
ĉαn

p→ cα < ∞ (by Proposition 2.1), and the last equality follows because
H(ΨA�Ψ0) is a positive constant. Q.E.D.

PROOF OF THEOREM 2.3: By Hörmander’s embedding theorem,
√
nH(F̄n�

Ψ0)= √
n supp∈Sd−1 |s(p� F̄n)− s(p�Ψ0)|. Let

h(·)= s(·�F)− s(·�Ψ0)

= s(·�F)− s
(

·�ΨAn ⊕ 1√
n
Δ1

)
+ s
(

·�ΨAn ⊕ 1√
n
Δ1

)
− s(·�Ψ0)

= s(·�F)− s(·�ΨAn)− s
(

·� 1√
n
Δ1

)
+ s
(

·�Ψ0 ⊕ 1√
n
Δ2

)
− s(·�Ψ0)

= s(·�F)− s(·�ΨAn)+ s
(

·� 1√
n
Δ2

)
− s
(

·� 1√
n
Δ1

)
�

Similarly, hk(·) = s(·�Fk) − s(·�Ψ0) = s(·�Fk) − s(·�ΨAn) + s(·� 1√
n
Δ2) −

s(·� 1√
n
Δ1). Hence under the local alternative, h, h1, h2� � � � are C(Sd−1) valued

i.i.d. random variables with E[h(p)] = 1√
n
s(p�Δ2) − 1√

n
s(p�Δ1). The limiting

distribution of
√
nH(F̄n�Ψ0) then follows from Proposition 3.1.9 in Li, Ogura,

and Kreinovich (2002).
The above result and Proposition 2.1 imply that

lim
n→∞

Pr(
√
nH(F̄n�Ψ0) > ĉαn)= lim

n→∞
Pr(

√
nH(F̄n�Ψ0)+ op(1) > cα)

= Pr{‖w‖C(Sd−1) > cα}�
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Recall that z is a Gaussian random system with E[z(p)] = 0 ∀p ∈ Sd−1 and
Cov(z(p)� z(q)) = E[s(p�F)s(q�F)] − E[s(p�F)]E[s(q�F)]. Also, w(·) is a
Gaussian random system with w d=z+ τ, where τ(p)= s(p�Δ2)− s(p�Δ1)∀p ∈
Sd−1 and d= means equivalent in distribution. So by Anderson’s lemma (see,
e.g., Molchanov (2005, Theorem 3.1.12)), for any finite set Sj ,

Pr
(

sup
p∈Sj

|w(p)|> cα
)

≥ Pr
(

sup
p∈Sj

|z(p)|> cα
)
�

The metric space (Sd−1�‖·� ·‖), where ‖·� ·‖ denotes the usual Euclidean dis-
tance in �d , is separable. Also z(·) and w(·) are uniformly continuous in
probability with respect to ‖·� ·‖ (a consequence of the fact that the support
function of a closed bounded set F is Lipschitz with Lipschitz constant ‖F‖H ,
(Molchanov (2005, Theorem F.1))). Thus both have separable versions. With-
out loss of generality we may assume that z(·) and w(·) are separable. The
result then follows from the same argument as in Section 6 of Andrews (1997,
p. 1114). Q.E.D.

PROOF OF THEOREM 2.4: We first show that F̄n ⊕ Bĉαn ⊂ Un. This follows
because F̄n ⊕ Bĉαn is a convex compact set (the Minkowski sum of convex sets
is convex) and because

√
nH(F̄n� F̄n ⊕Bĉαn)= √

nH({0}�Bĉαn)= ĉαn, where the
last equality follows from the definition of Bĉαn . Hence F̄n ⊕ Bĉαn ∈ CCn�1−α.
We now show that Un ⊂ F̄n ⊕ Bĉαn . Take any ψ ∈ Un. Then by definition ∃Ψ̃ ∈
CCn�1−α such that ψ ∈ Ψ̃ and

√
nH(F̄n� Ψ̃ ) ≤ ĉαn. Choose f̃ ∈ F̄n such that f̃ =

arg inff∈F̄n‖ψ− f‖. Let b̃ = ψ− f̃; then by construction ψ= f̃ + b̃, and b̃ ∈ Bĉαn
because

‖b̃‖ = ‖ψ− f̃‖ = inf
f∈F̄n

‖ψ− f‖ ≤ sup
g∈Ψ̃

inf
f∈F̄n

‖g − f‖ ≤ ĉαn√
n
�

where the last inequality follows because
√
nH(F̄n� Ψ̃ )≤ ĉαn. Hence ψ ∈ F̄n ⊕

Bĉαn . Q.E.D.

A.2. Proofs for Section 2.3

PROOF OF COROLLARY 2.5: By the triangle inequality, dH(Ψ0�E[F]) ≤
dH(Ψ0� F̄n) + dH(F̄n�E[F]), and the result follows from a similar argument
as in the proof of Theorem 2.2 because dH(Ψ0�E[F]) is a positive constant
when Ψ0 � E[F], dH(F̄n�E[F]) p→0 by Theorem A.1, and by Theorem 2 in
Lifshits (1982), if Var(z(p)) > 0 for each p ∈ Sd−1, the law of supp∈Sd−1{−z(p)}+
is absolutely continuous with respect to Lebesgue measure on �++, so that̂̃cαn = c̃α + op(1). Q.E.D.
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PROOF OF COROLLARY 2.6: The fact that DUn = F̄n ⊕ B̂̃cαn follows from a
similar argument as in the proof of Theorem 2.4. The fact that DUn ⊂ Un is
an obvious consequence of the fact that for any two compact sets A and B,
H(A�B)≥ dH(A�B). Q.E.D.

PROOF OF PROPOSITION 2.7: We show that E[F] ∈ DCCn�1−α if and only if
E[F] ⊆DUn. Trivially, E[F] ∈ DCCn�1−α �⇒ E[F] ⊆DUn. Next, given any two
subsets A and B of �d , let Bc denote the c-envelope (or parallel set) of B, that
is, Bc = {b̃ ∈ �d : infb∈B ‖b − b̃‖ ≤ c}. Because dH(A�B)= inf{c > 0 :A⊂ Bc}, it
follows that

E[F] ⊆DUn ⇐⇒ E[F] ⊆ F̄n ⊕B̂̃cαn �⇒ dH(E[F]� F̄n)≤
̂̃cαn√
n

�⇒ E[F] ∈ DCCn�1−α�

Therefore,

lim
n→∞

Pr{E[F] ⊆DUn} = lim
n→∞

Pr{E[F] ∈ DCCn�1−α} = 1 − α� Q.E.D.

A.3. Proofs for Section 3

PROOF OF THEOREM 3.2:
This result can be easily proved by using the following lemmas.

LEMMA A.2: Let Y = [yL� yU ], where yL� yU are real valued random variables
such that Pr(yL ≤ yU)= 1. Then Y is a compact valued nonempty SVRV.

PROOF: Theorem 1.2.5 in Molchanov (2005) implies that Y is an SVRV iff
s(p�Y) is a random variable for each p ∈ {−1�1}. Since yL(ω)≤ yU(ω) μ-a.s.,

s(p�Y(ω))= max{pyL(ω)�pyU(ω)} =
{
yU(ω)� if p= 1,
−yL(ω)� if p= −1.

From the fact that yL and yU are random variables, also s(p�Y) is a random
variable and the claim follows. The fact that Y takes almost surely compact
values follows because yL and yU are real valued random variables. The fact
that Y is nonempty follows because Pr(yL ≤ yU)= 1. Q.E.D.

LEMMA A.3: Given an i.i.d. sequence {yiL� yiU}ni=1, where yiL� yiU are real val-
ued random variables such that Pr(yiL ≤ yiU) = 1 for each i, let Yi = [yiL� yiU ].
Then {Yi : i ∈ N} are i.i.d. SVRVs.
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PROOF: (i) {Yi}ni=1 are identically distributed. For A ∈ B(K(�)), μYi(A) =
μ(Y−1

i (A))= Pr{[yiL� yiU ] ∩A �= ∅}. Since {(yiL� yiU)}ni=1 are i.i.d., μYi = μYj for
all i and j.

(ii) {Yi}ni=1 are independent. For all C1� � � � �Cn in Kk(�),
μ(Y−1

1 (C1)� � � � �Y
−1
n (Cn))= μ(Y1 ∩C1 �= ∅� � � � �Yn ∩Cn �= ∅)

= Pr{[y1L� y1U ] ∩C1 �= ∅� � � � � [ynL� ynU ] ∩Cn �= ∅}

=
n∏
i=1

Pr{[yiL� yiU ] ∩Ci �= ∅}�

where the last equality comes from the fact that {(yiL� yiU)}ni=1 are independent.
The result then follows by Proposition 1.1.19 in Molchanov (2005). Q.E.D.

To complete the proof of Theorem 3.2:
(i) Let y(ω) ∈ Y(ω)= [yL(ω)� yU(ω)] μ-a.s. Then

∫
Ω
y dμ ∈ [E(yL)�E(yU)].

This implies E[Y ] ⊂ [E(yL)�E(yU)]. Conversely, since [E(yL)�E(yU)] is a con-
vex set, any b ∈ [E(yL)�E(yU)] can be written as b = αE(yL)+ (1 − α)E(yU)
for some α ∈ [0�1]. Define yb(ω)= αyL(ω)+ (1 −α)yU(ω). Then

∫
Ω
yb dμ= b

and yb ∈ S(Y), and therefore [E(yL)�E(yU)] ⊂E[Y ].
Lemmas A.2 and A.3 show that {Y�Yi : i ∈ N} are i.i.d. compact valued non-

empty SVRVs. To verify that the SVRVs are integrably bounded, observe that∫ ‖Y‖H dμ≤ E(|yL|)+E(|yU |) <∞, where the last inequality follows from the
assumptions in Theorem 3.2. All the conditions of Theorem A.1 are therefore
satisfied.

(ii) Our random sets are i.i.d., compact valued (i.e., inKk(�)), and nonempty
by Lemmas A.2 and A.3. We know that

∫
Ω

‖Y(ω)‖2
H dμ ≤ ∫

Ω
yL(ω)

2 dμ +∫
Ω
yU(ω)

2 dμ, which is finite by assumption. Therefore, all the conditions
in Theorem A.2 are satisfied. By the definition of the support function,
s(p�Y)(ω)= yU(ω) if p= 1, s(p�Y)(ω)= −yL(ω) if p= −1. The covariance
kernel in the theorem follows by simple algebra. Q.E.D.

A.4. Proofs for Section 4

In the text we defined Θ, ΘM , and the relevant set valued random variables
for the simple case x ∈ �. Here we extend these definitions for the case of a
column vector x ∈ �d , and then prove all the results for this more general case.
Let

Σ≡
[

1 E(x′)
E(x) E(xx′)

]
� Σ̂n ≡

[
1 x′

x xx′

]
�

G(ω)=
{([

y(ω)

x(ω)y(ω)

]
: y(ω) ∈ Y(ω)

)}
�(A.2)
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Gi(ω)=
{([

yi(ω)

xi(ω)yi(ω)

]
: yi(ω) ∈ Yi(ω)

)}
�

Θ= Σ−1E[G](A.3)

=
{
θ ∈ �d+1 :θ=

[
1 E(x′)

E(x) E(xx′)

]−1 [
E(y)

E(xy)

]
�

[
y

xy

]
∈ S1(G)

}
�

and

ΘM =
{
θM ∈ �d+1 :θM = arg min

∫
(y − θ1 − θ′

2x)2 dη�η ∈ Pyx

}
�(A.4)

where

Pyx = {
η : Pr(yL ≤ t�x ≤ x0)≥ η((−∞� t]� (−∞�x0])

≥ Pr(yU ≤ t�x ≤ x0)∀t ∈ �� ∀x0 ∈ �d�

η((−∞�+∞)� (−∞�x0])= Pr(x ≤ x0)∀x0 ∈ �d
}
�

θ= [θ1 θ′
2 ]′ � and the notation x ≤ x0 indicates that each element of x is less

than or equal to the corresponding element of x0.

LEMMA A.4: G and {Gi}ni=1 as defined in equation (A.2) are nonempty com-
pact valued SVRVs.

PROOF: By Lemma A.2, Y is a nonempty, compact valued SVRV. By The-
orem 1.2.7 in Li, Ogura, and Kreinovich (2002) there is a countable selection
{fi}∞

i=1 such that fi(ω) ∈ Y(ω), fi ∈ S(Y) for all i, and cl{fi(ω)} = Y(ω) μ-a.s.
Therefore, it is easy to see that for each λ ∈ �, λY is an SVRV and for each
set A, Y ⊕A is an SVRV. Observe that x is a random vector defined on the
same probability space as Y . Then (xY)(ω) = {x(ω)f (ω) : f (ω) ∈ Y(ω)} =
cl{x(ω)fi(ω)} μ-a.s. Hence,

{ fi
xfi

}
spans the setG as defined in (A.2) and there-

foreG is an SVRV by Theorem 1.2.7 in Li, Ogura, and Kreinovich (2002). The
fact that G is nonempty and compact valued follows from the same arguments
as in Lemma A.2. Q.E.D.

LEMMA A.5: Under Assumption 4.1, {Gi}ni=1 as defined in equation (A.2) is a
sequence of i.i.d. SVRVs.

PROOF: (i) {Gi}ni=1 are identically distributed. For A ∈ B(K(�d+1)),

μGi(A)= μ(G−1
i (A))
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= μ

⎛⎜⎜⎝ω :∃yi(ω) ∈ Yi(ω)� (a1� � � � � ad+1) ∈A s.t.

⎡⎢⎢⎢⎣
y−1
i (a1)=ω

(x1iyi)
−1(a2)=ω
���

(xdiyi)
−1(ad+1)=ω

⎤⎥⎥⎥⎦
⎞⎟⎟⎠ �

Since {(Yi�xi)}ni=1 are identically distributed, μGi = μGj for all i and j.
(ii) {Gi}ni=1 are independent. For all sets C1� � � � �Cn in Kk(�d+1),

μ(G−1
1 (C1)� � � � �G

−1
n (Cn))= μ(G1 ∩C1 �= ∅� � � � �Gn ∩Cn �= ∅)

= Pr
{([

y1

x1y1

]
: y1 ∈ [y1L� y1U ]

)
∩C1 �= ∅� � � � �([

yn
xnyn

]
: yn ∈ [ynL� ynU ]

)
∩Cn �= ∅

}

=
n∏
i=1

Pr
{([

yi
xiyi

]
: yi ∈ [yiL� yiU ]

)
∩Ci

}
�

where the last equality comes from the fact that {(yiL� yiU�xi)}ni=1 are in-
dependent. The result then follows by Proposition 1.1.19 in Molchanov
(2005). Q.E.D.

PROOF OF PROPOSITION 4.1: With x a column vector in �d , the sets Θ and
ΘM are convex and compact subsets of �d+1. By assumption, Θ and ΘM are
also nonempty, because the set G is integrably bounded. For any vector θ ∈Θ
or θM ∈ΘM , let the first entry of such vector correspond to the constant term
and be denoted, respectively, by θ1 and θM1 , and let the remaining d entries
be denoted, respectively, by θ2 and θM2 . We start by showing that ΘM ⊂ Θ.
Pick a vector [θM1 (θM2 )

′ ]′ ∈ ΘM . Then there exists a distribution for (y�x)
with x-marginal P(x) denoted ηM0 such that [θM1 (θM2 )

′ ]′ is a minimizer of
the problem in (A.4). Let (yM�x) be a random vector with distribution ηM0 . It
follows that yM(ω) ∈ Y(ω) μ-a.s., and therefore [ yM(ω) x′yM(ω) ]′ ∈G(ω)
μ-a.s., from which [θM1 (θM2 )

′ ]′ ∈Θ.
Conversely, pick a vector [θ1 (θ2)

′ ]′ ∈Θ. Then there exists a random vector
[ y yx′ ]′ ∈ S1(G) such that[

θ1

θ2

]
=
[

1 E(x′)
E(x) E(xx′)

]−1 [
E(y)

E(xy)

]
�
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We show that the corresponding vector (y�x) has an admissible probability
distribution η ∈ Pyx. Because (y�x) is a selection from (Y�x), it follows from
Theorem 2.1 in Artstein (1983) that for any t ∈ �, x0 ∈ �d ,

η(y ≤ t�x ≤ x0)≤ μ(Y ∩ (−∞� t] �= ∅�x ≤ x0)= Pr(yL ≤ t�x ≤ x0)�

η(y ≥ t�x ≤ x0)≤ μ(Y ∩ [t�+∞) �= ∅�x ≤ x0)= Pr(yU ≥ t�x ≤ x0)�

The fact that the marginal of η(y�x) is P(x) follows easily. Hence
[θ1 (θ2)

′ ]′ ∈ΘM . Q.E.D.

PROOF OF THEOREM 4.2: Theorem 4.2 can be easily proved by using the
following lemma.

LEMMA A.6: Let {F�Fi : i ∈ N} be i.i.d. nonempty compact valued, integrably
bounded SVRVs. Let {Πi : i ∈ N} be i.i.d. random d × d matrices on (Ω�A�μ)
such that Πi

a�s�→Π element-by-element, where Π is a d × d nonstochastic matrix
with finite elements and Πi has finite elements with probability 1. Then

H(ΠnF̄n�ΠE[F]) a�s�→0�

PROOF: This is a version of Slutsky’s theorem for d-dimensional SVRVs. We
interpret vectors in �d as being column vectors. Then

H(ΠnF̄n�ΠE[F])
= max

{
sup
fn∈F̄n

inf
f∈E[F]

‖Πnfn −Πf‖� sup
f∈E[F]

inf
fn∈F̄n

‖Πnfn −Πf‖
}

≤ max
{

sup
fn∈F̄n

inf
f∈E[F]

(‖Πnfn −Πnf‖ + ‖Πnf −Πf‖)�

sup
f∈E[F]

inf
fn∈F̄n

(‖Πnfn −Πnf‖ + ‖Πnf −Πf‖)
}

≤ ‖Πn‖max
{

sup
fn∈F̄n

inf
f∈E[F]

‖fn − f‖� sup
f∈E[F]

inf
fn∈F̄n

‖fn − f‖
}

+ ‖Πn −Π‖ sup
f∈E[F]

‖f‖ = oa�s�(1)�

because ‖Πn‖ a�s�→‖Π‖ <∞ by Slutsky’s theorem, max{supfn∈F̄n inff∈E[F]‖fn − f‖�
supf∈E[F]inffn∈F̄n‖fn − f‖} a�s�→0 by the LLN for SVRVs, ‖Πn −Π‖ a�s�→0 by the con-
tinuous mapping theorem, and supf∈E[F]‖f‖ < ∞ because all selections of an
integrably bounded SVRV are integrable. Q.E.D.

The proof of Theorem 4.2 follows directly from Lemma A.6, replacing
Σ̂−1
n =Πn, Σ−1 =Π, Fi =Gi, and F =G. This is because Lemmas A.4 and A.5
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show that {G�Gi : i ∈ N} are i.i.d. nonempty compact valued SVRVs. To verify
that these SVRVs are integrably bounded, observe that

∫ ‖G‖H dμ≤ E(|yL|)+
E(|yU |)+∑d

k=1[E(|xkyL|)+E(|xkyU |)]<∞, where the last inequality follows
from the assumptions in Theorem 4.2. If in addition E(|yL|2) <∞, E(|yU |2) <
∞, E(|xkyL|2) <∞, E(|xkyU |2) <∞, and E(|xk|4) <∞, k= 1� � � � � d, then

max
{

sup
gn∈Ḡn

inf
g∈E[G]

‖gn − g‖� sup
g∈E[G]

inf
gn∈Ḡn

‖gn − g‖
}

=Op
(

1√
n

)
by the CLT for SVRVs, because

∫ ‖G‖2
H dμ ≤ E(|yL|2) + E(|yU |2) +∑d

k=1[E(|xkyL|2) + E(|xkyU |2)] < ∞ and ‖Πn − Π‖ = Op(
1√
n
) by the contin-

uous mapping theorem. Q.E.D.

PROOF OF THEOREM 4.3: Before giving this proof, we introduce a definition
and three lemmas.

DEFINITION 7: Let w be a random vector in �d . Its zonoid, Λw, is the Au-
mann expectation of the random segment in �d with the endpoints being the
origin (0) and the d-dimensional vector w. The lift zonoid, Λ̃w, of w is the Au-
mann expectation of the random segment in �d+1 with the endpoints being the
origin and the (d+ 1)-dimensional vector (1�w′).

In the following lemma, for p ∈ [1�∞), denote by Lp
A = Lp(Ω�A��d) the

space of A-measurable random variables with values in �d such that the Lp-
norm ‖ξ‖p = [E(‖ξ‖p)]1/p is finite, and for an SVRV F defined on (Ω�A)
denote by Sp

A(F) the family of all selections of F from Lp
A, so that Sp

A(F) =
S(F)∩ Lp

A.

LEMMA A.7: LetA be an integrably bounded SVRV defined on (Ω�A�μ). For
each σ-algebra A0 ⊂ A there exists a unique integrable A0-measurable SVRV B,
denoted by B = E[A|A0] and called the conditional Aumann expectation of A,
such that

S1
A0
(B)= cl{E[a|A0] : a ∈ S1

A(A)}�
where the closure is taken with respect to the norm in L1

A0
. Since A is integrably

bounded, so is B.

For the proof, see Molchanov (2005, Theorem 2.1.46).
Using the definition of a lift zonoid and the properties of conditional expec-

tations of SVRV, we prove the following result:

LEMMA A.8: Define Θ as in (4.2). Under Assumptions 4.2, 4.3, and 4.5, Θ is
a strictly convex set.
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PROOF: The random set G can be represented as the convex hull of points
with coordinates [ y x′y ]′, where y(ω) ∈ Y(ω). Define

ζ = yU − yL� η= [ yL x′yL ]′ �

Then one can represent G as

G= η⊕ L̃� L̃= co{0� [ζ x′ζ ]′}�
Hence, by Theorem 2.1.17 in Molchanov (2005), E[G] is the sum of the expec-
tation of η (a random vector) and the Aumann expectation of the random set
L̃ being the convex hull of the origin (0) and [ζ x′ζ ]′ = ζ [ 1 x′ ]′.

If ζ were degenerate and identically equal to 1, then the Aumann expecta-
tion E[L̃] would be the lift zonoid of x, Λ̃x. In our case ζ is a nondegenerate
random variable. By Theorem 2.1.47(ii) and (iii) in Molchanov (2005), we can
use the properties of the conditional expectation of SVRVs to get

E[G|ζ] =E(η|ζ)⊕ E[L̃|ζ] =E(η|ζ)⊕ ζE
[
co(0� [ 1 x′ ]′)|ζ]�

E[co(0� [ 1 x′ ]′)|ζ] is a lift zonoid, and therefore E[G|ζ] is a (rescaled by
ζ) lift zonoid shifted by the vector E(η|ζ). It then follows by Corollary 2.5
in Mosler (2002) that since x has an absolutely continuous distribution with
respect to Lebesgue measure on �d , E[G|ζ] is a strictly convex set P(ζ)-
a.s. Premultiplying G by the nonrandom matrix Σ−1, we obtain that also
E[Σ−1G|ζ] is a strictly convex set P(ζ)-a.s. Therefore, by Corollary 1.7.3
in Schneider (1993), s(·�E[Σ−1G|ζ]) is Fréchet differentiable on �d+1\{0}
P(ζ)-a.s. By Theorem 2.1.47(iv) in Molchanov (2005), s(p�E[Σ−1G|ζ]) =
E[s(p�Σ−1G)|ζ]. Observing that by Corollary 1.7.3 in Schneider (1993) the gra-
dient of s(p�E[Σ−1G|ζ]) is given by

∇s(p�E[Σ−1G|ζ])
= E[Σ−1G|ζ] ∩ {ϑ ∈ �d+1 : 〈ϑ�p〉 = s(p�E[Σ−1G|ζ])}�

we can apply Theorem 2.1.47(v) in Molchanov (2005) to the sets {0} and Σ−1G
(which is absolutely integrable because by assumption G is absolutely inte-
grable; see the proof of Theorem 4.2) to obtain

E
∥∥∇s(p�E[Σ−1G

∣∣ζ])‖ ≤ E[‖E[Σ−1G|ζ]‖H
]=E[H(E[Σ−1G|ζ]� {0})]

≤ E[H(Σ−1G� {0})]=E[‖[Σ−1G]‖H
]
<∞�

Hence

s(p�Θ)= s(p�E[Σ−1G])=E[s(p�Σ−1G)]
=
∫
E[s(p�Σ−1G)|ζ]dP(ζ)
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is differentiable at p ∈ �d+1\{0}. The final result follows because the support set
in each direction p ∈ Sd−1 of a set which has a differentiable support function
contains only one point (Schneider (1993, Corollary 1.7.3). Q.E.D.

LEMMA A.9: Let {F�Fi : i ∈ N} be i.i.d. nonempty compact valued SVRVs such
that E[‖F‖2

H]<∞. Let {Πi : i ∈ N} be i.i.d. random d× d matrices on (Ω�A�μ)
such that Πi

p→Π element-by-element, where Π is a d × d nonstochastic matrix
with finite elements and Πi has finite elements with probability 1. Then

√
n
(
s(·�ΠnF̄n)− s(·�ΠnE[F])) �⇒ zΠ(·)�

where zΠ is a Gaussian random system with E[zΠ(p)] = 0 for all p ∈ Sd−1,
and E[zΠ(p)zΠ(q)] = E[s(p�ΠF)s(q�ΠF)] −E[s(p�ΠF)]E[s(q�ΠF)] for all
p�q ∈ Sd−1.

PROOF: It follows from the assumptions of the lemma that the sets {ΠF�
ΠFi : i ∈ N} are i.i.d. nonempty, compact valued SVRVs such that E[‖ΠF‖2

H]<
∞. By the central limit theorem for C(Sd−1)-valued random variables in Li,
Ogura, and Kreinovich (2002, Proposition 3.1.9), the assumptions of which are
verified in Li, Ogura, and Kreinovich (2002, Proof of Theorem 3.1.8), it follows
that

√
n
(
s(·�ΠF̄n)− s(·�ΠE[F]))≡ zΠn (·) �⇒ zΠ(·)

in C(Sd−1). By Skorokhod representation theorem there exist random elements
zΠ�n (·) and zΠ�(·) with zΠ�n (·) d=zΠn (·) and zΠ�(·) d=zΠ(·), such that zΠ�n (·) →
zΠ�(·) a.s. By Theorem 1.8.12 of Schneider (1993), this convergence is uniform.
Since Πn

p→Π, the result follows by standard arguments. Q.E.D.

The proof of Theorem 4.3 proceeds in steps.

Step 1—Derivation of the fact that:

√
n[s(·� Θ̂n)− s(·�Θ)]
A=√

n
[
(s(·�Σ−1Ḡn)− s(·�Θ))+ (s(·� Σ̂−1

n E[G])− s(·�Θ))]�
where A= means asymptotically equivalent in distribution: Using the definition
of Θ̂n,

√
n[s(·� Θ̂n)− s(·�Θ)]
= √

n
[(
s(·� Σ̂−1

n Ḡn)− s(·� Σ̂−1
n E[G]))+ (s(·� Σ̂−1

n E[G])− s(·�Θ))]�
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By Lemma A.9,
√
n
(
s(·� Σ̂−1

n Ḡn)− s(·� Σ̂−1
n E[G])) A=√

n(s(·�Σ−1Ḡn)− s(·�Θ))�
Step 2—Derivation of the asymptotic distribution of

√
n [ (s(·�Σ−1Ḡn)−

s(·�Θ)) un(·) ]′, where un(p)≡ (Σ̂n −Σ)Σ̂−1
n p, p ∈ Sd:

Lemmas A.4 and A.5 show that {G�Gi : i ∈ N} are i.i.d. nonempty compact
valued SVRVs. Observe that by the assumptions of Theorem 4.3,

∫ ‖G‖2
H dμ≤

E(|yL|2)+E(|yU |2)+∑d

k=1[E(|xkyL|2)+E(|xkyU |2)]<∞ andE(|x|4) <∞. Us-
ing the same argument as in the proof of Lemma A.9, it follows by the central
limit theorem for C(Sd) valued random variables in Li, Ogura, and Kreinovich
(2002, Proposition 3.1.9) and by the Cramér–Wold device that

√
n

[
s(·�Σ−1Ḡn)− s(·�Θ)

un(·)
]

�⇒
(
zΣ

−1
(·)

u(·)
)

(A.5)

as a sequence of processes indexed by p ∈ Sd , where for each p ∈ Sd ,
( zΣ

−1
(p) u(p) ) is a (d + 2)-dimensional normal random vector with

E[zΣ−1
(p)] and E[u(p)] = 0. Regarding the covariance kernel, denote by {ρij},

i� j = 1� � � � � d+ 1, the elements of Σ−1 and let

Σ̂n = 1
n

n∑
i=1

Πi with Πi ≡

⎡⎢⎢⎢⎣
1 x1i · · · xdi
x1i x2

1i · · · x1ixdi
���

���
� � �

���

xdi x1ixdi · · · x2
di

⎤⎥⎥⎥⎦ �(A.6)

Then

E

[(
zΣ

−1
(p)

u(p)

)(
zΣ

−1
(p)

u(p)

)′ ]
=
[
E[(s(p�Σ−1G))2] −E[s(p�Σ−1G)]2 κ′

p�p

κp�p Vp�p

]
�

where Vp�p =E[((Πi−Σ)Σ−1p)((Πi−Σ)Σ−1p)′] and κp�p is a (d+1)×1 vector
with first element

κ1�(p�p) =
d+1∑
k=1

d+1∑
i=2

[(
E[xi−1s(p�Σ−1G)] − s(p�Θ)E(xi−1)

)]
ρikpk

and jth element (j = 2� � � � � d+ 1)

κj�(p�p) =
[(
E[xj−1s(p�Σ−1G)] − s(p�Θ)E(xj−1)

) d+1∑
l=1

ρ1lpl
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+
d+1∑
l=1

d+1∑
i=2

(
E[xj−1xi−1s(p�Σ−1G)]

− s(p�Θ)E(xj−1xi−1)
)
ρilpl

]

with xj the jth element of x.
For the next step in this proof it is also useful to observe that

E
[
zΣ

−1
(p)zΣ

−1
(q)
]

(A.7)

=E[s(p�Σ−1G)s(q�Σ−1G)] −E[s(p�Σ−1G)]E[s(q�Σ−1G)]�
E[u(p)u(q)] = Vp�q =E[((Πi −Σ)Σ−1p)((Πi −Σ)Σ−1q)′

]
�

and E[zΣ−1
(p)u(q)] = κp�q, where κp�q is a (d + 1)× 1 vector with 1st and jth

element (j = 2� � � � � d+ 1) given, respectively, by

κ1�(p�q) =
d+1∑
k=1

d+1∑
i=2

[(
E[xi−1s(p�Σ−1G)] − s(p�Θ)E(xi−1)

)]
ρikqk�(A.8)

κj�(p�q) =
[(
E[xj−1s(p�Σ−1G)] − s(p�Θ)E(xj−1)

) d+1∑
l=1

ρ1lql

+
d+1∑
l=1

d+1∑
i=2

(
E[xj−1xi−1s(p�Σ−1G)]

− s(p�Θ)E(xj−1xi−1)
)
ρilql

]
�

Step 3—Derivation of the asymptotic distribution of
√
n[s(·� Σ̂−1

n Ḡn)−
s(·�Θ)]: Step 1 gives that

√
n[s(·� Σ̂−1

n Ḡn)− s(·�Θ)]
A=√

n
{
(s(·�Σ−1Ḡn)− s(·�Θ))+ (s(·� Σ̂−1

n E[G])− s(·�Θ))}�
Recall that by Lemma A.8, since x has an absolutely continuous distribution
with respect to Lebesgue measure on �d , Θ is a strictly convex set. Hence, its
support set in the direction p ∈ Sd is the singleton

ξp =Θ∩ {ϑ ∈ �d+1 : 〈ϑ�p〉 = s(p�Θ)}�
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By Corollary 1.7.3 of Schneider (1993), it follows that s(p�Θ) is Fréchet differ-
entiable at p ∈ �d+1\{0} with gradient equal to ξp and, therefore, the functional
delta method (Van der Vaart (2000, Theorem 20.8)) implies that

√
n
[
s(p� Σ̂−1

n E[G])− s(p�Θ)]
= √

n[s(ΣΣ̂−1
n p�Θ)− s(p�Θ)]

= √
n
[
s(p+(Σ− Σ̂n)Σ̂−1

n p�Θ)− s(p�Θ)]
= s

(
p+ 1√

n
[√n(Σ− Σ̂n)Σ̂−1

n p]�Θ)− s(p�Θ)
1√
n

d−→−〈ξp�u(p)〉�

where u(p) is given in equation (A.5). It then follows by another application of
the functional delta method that

√
n
[
(s(·�Σ−1Ḡn)− s(·�Θ))+ (s(·� Σ̂−1

n E[G])− s(·�Θ))]
�⇒ zΣ

−1
(·)− 〈ξ·�u(·)〉�

as a sequence of processes indexed by p ∈ Sd , with zΣ−1
(p) and u(p) given in

equation (A.5) and such that E[zΣ−1
(p)− 〈ξp�u(p)〉] = 0 and

E
[(
zΣ

−1
(p)− 〈ξp�u(p)〉)(zΣ−1

(q)− 〈ξq�u(q)〉)]
=E[s(p�Σ−1G)s(q�Σ−1G)] −E[s(p�Σ−1G)]E[s(q�Σ−1G)]

− 〈ξp�κq�p〉 − 〈κp�q�ξq〉 + 〈ξp� Vp�qξq〉�
where Vp�q and κp�q are given in (A.7) and (A.8).

By Hörmander’s embedding theorem and by Lemma A.1,
√
nH(Θ̂n�Θ) =√

n supp∈Sd
|s(p� Σ̂−1

n Ḡn) − s(p�Θ)| and
√
ndH(Θ� Θ̂n) = √

n supp∈Sd
[−(s(p�

Σ̂−1
n Ḡn)− s(p�Θ))]+. Letting v(p) ≡ zΣ

−1
(p)− 〈ξp�u(p)〉 for each p ∈ Sd , the

result follows by the continuous mapping theorem.
The fact that Σ is of full rank implies that Σ−1p �= 0 for each p ∈ Sd . Let

f (xi)=
〈

p�Σ−1

[
1
xi

]〉
�(A.9)

Then

s(p�Σ−1Gi)= sup
{〈

p�Σ−1

[
yi

xiyi

]〉
:[

yi
xiyi

]
∈
([

yi
xiyi

]
� yi(ω) ∈ Yi(ω)

)}
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= yiLI(f (xi) < 0)f (xi)+ yiUI(f (xi)≥ 0)f (xi)�

where I(·) is the indicator function of the event in brackets. From the argu-
ments in Steps 1–3 it follows that for each p ∈ Sd ,

Var(v(p))= Var
(
s(p�Σ−1Gi)− s(p�Θ)− 〈ξp� (Πi −Σ)Σ−1p〉)

= Var
(
yiLI(f (xi) < 0)f (xi)+ yiUI(f (xi)≥ 0)f (xi)

− 〈ξp�ΠiΣ
−1p〉)�

where f (xi) is defined in (A.9). It follows from the law of iterated expectations
that

Var(v(p)) ≥ E[Var
(
yiLI(f (xi) < 0)f (xi)+ yiUI(f (xi)≥ 0)f (xi)

− 〈ξp�ΠiΣ
−1p〉|xi

)]
= E

[
(f (xi))2I(f (xi) < 0)Var(yiL|xi)
+ (f (xi))2I(f (xi)≥ 0)Var(yiU |xi)

]
≥ σ2E

[
(f (xi))2I(f (xi) < 0)+ (f (xi))2I(f (xi)≥ 0)

]
= σ2E

[(〈
p�Σ−1

[
1
xi

]〉)2 ]
= σ2〈p�Σ−1ΣΣ−1p〉> 0

for each p ∈ Sd�

where the second inequality follows because by assumption, Var(yL|x),
Var(yU |x) ≥ σ2 > 0 P(x)-a.s., and the last inequality follows because Σ is of
full rank by assumption. Hence Var(v(p)) > 0 for each p ∈ Sd , and by the same
argument as in the proof of Proposition 2.1, the law of ‖v‖C(Sd) is absolutely
continuous with respect to Lebesgue measure on �+. Theorem 2 in Lifshits
(1982) assures that the law of supp∈Sd

{−v(p)}+ is absolutely continuous with
respect to Lebesgue measure on �++.

Q.E.D.

PROOF OF COROLLARY 4.4: (i) By definition,
√
n[s(p�RΘ̂n)− s(p�RΘ)] =√

n[s(R′p� Θ̂n)− s(R′p�Θ)]. Let p̃ ≡R′p� A simple normalization makes p̃ an
element of Sl−1. Using the definition of Θ̂n,

√
n[s(p̃� Θ̂n)− s(p̃�Θ)](A.10)

= √
n[s(p̃� Σ̂−1

n Ḡn)− s(p̃�Θ)]
= √

n
[(
s(p̃� Σ̂−1

n Ḡn)− s(p̃� Σ̂−1
n E[G]))

+ (s(p̃� Σ̂−1
n E[G])− s(p̃�Θ))]�
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By Lemma A.9,
√
n(s(·� Σ̂−1

n Ḡn) − s(·� Σ̂−1
n E[G])) �⇒ zΣ

−1
(·). Regarding the

other portion of expression (A.10), using a similar argument as in the proof of
Theorem 4.3, we obtain

√
n
(
s(p̃� Σ̂−1

n E[G])− s(p̃�Θ))
= √

n(s(ΣΣ̂−1
n p̃�Θ)− s(p̃�Θ))

= √
n
[
s(p̃−(Σ̂n −Σ)Σ̂−1

n p̃�Θ)− s(p̃�Θ)]
d→−〈ξp̃�u(p̃)〉�

where ξ and u are defined in Theorem 4.3. The result follows.
(ii) Observing that when R= [ 0 0 · · · 0 1 ],

√
nH(RΘ̂n�RΘ)
= √

nmax
{|s(−R� Θ̂n)− s(−R�Θ)|� |s(R� Θ̂n)− s(R�Θ)|}�

√
ndH(RΘ�RΘ̂n)

= √
nmax

{[
(s(−R� Θ̂n)− s(−R�Θ))

]
+�[

(s(R� Θ̂n)− s(R�Θ))]−}�
the result follows easily. Q.E.D.

PROOF OF COROLLARY 4.5: Without loss of generality, let us write, for
i = 1� � � � � n, xi = [ 1 xi1 · · · xid−1 xid ] = [ xi1 xid ] and Gi = {x′

iyi : yi ∈
Yi}. In this proof we deviate from the notation used in the previous theo-
rems and let X = [X1 Xd ], X1 = [ x′

11 · · · x′
n1 ]′, Xd = [x1d · · · xnd ]′.

Define P = X(X ′X)−1X ′, M = I − P , Pk = Xk(X
′
kXk)

−1X ′
k, and Mk =

I − Pk for k = 1� � � � � d. We have Σ̂n = 1
n
(X ′X) and Θ̂n = Σ̂−1

n
1
n

⊕n

i=1Gi =
(X

′
X)−1

⊕n

i=1Gi. Let X̃d =M1Xd = x̃id and G̃i = {x̃idyi : yi ∈ Yi}. Let Θ̂d+1�n =
{θd+1 ∈ � : [θ1 θd+1 ]′ ∈ Θ̂n}. Define Θ̃d+1�n = (X̃ ′

dX̃d)
−1
⊕n

i=1 G̃i. Note that
(X̃ ′

dX̃d)=∑n

i=1 x̃
2
id is a scalar. Also note that

n⊕
i=1

G̃i =
n⊕
i=1

{x̃idyi : yi ∈ Yi = [yiL� yiU ]}

=
n⊕
i=1

[min{x̃idyiL� x̃idyiU}�max{x̃idyiL� x̃idyiU}]

=
[

n∑
i=1

min{x̃idyiL� x̃idyiU}�
n∑
i=1

max{x̃idyiL� x̃idyiU}
]
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from which

Θ̃d+1�n = 1∑n

i=1 x̃
2
id

[
n∑
i=1

min{x̃idyiL� x̃idyiU}�
n∑
i=1

max{x̃idyiL� x̃idyiU}
]
�

Let θ̂d ∈ Θ̂d+1�n. Then there exists θ̂ = [ θ̂1 θ̂d ]′ ∈ Θ̂n, where θ̂1 ∈ �d .
Therefore, there exists y = [ y1 · · · yn ]

′
s.t. yi ∈ Yi, ∀i = 1� � � � � n and

θ̂ = (X ′X)−1X ′y. Now by using the Frisch–Waugh–Lovell (FWL) theorem,
we can deduce that θ̂d = (X̃ ′

dX̃d)
−1X̃ ′

dy ∈ (X̃ ′
dX̃d)

−1
⊕n

i=1 G̃i = Θ̃d+1�n. Thus
Θ̃d+1�n ⊇ Θ̂d+1�n.

Now take θd ∈ Θ̃d+1�n. Then we can write θd = (X̃ ′
dX̃d)

−1X̃ ′
dy, where y =

[ y1 · · · yn ]′ s.t. yi ∈ Yi, ∀i= 1� � � � � n. A simple manipulation gives

y = Py +My =X(X ′X)−1X ′y +My

=Xθ̄+My (where θ̄= (X ′X)−1X ′y ∈ Θ̂n)

=X1θ̄1 +Xdθ̄d +My�

Now again by using FWL theorem, we get that θ̄d = (X̃ ′
dX̃d)

−1X̃ ′
dy = θd ∈

Θ̂d+1�n. Hence Θ̃d+1�n ⊆ Θ̂d+1�n. Q.E.D.

PROOF OF PROPOSITION 4.6: Using Lemma A.9 and Theorem 2.4 in Giné
and Zinn (1990), since Σ̂−1∗

n is a consistent estimator of Σ−1, we have that

r∗n = √
nH(Σ̂−1∗

n Ḡ∗
n� Θ̂n)

A= √
n sup

p∈Sd

∣∣(s(p�Σ−1Ḡ∗
n)− s(p�Σ−1Ḡn))

+ (s(p� Σ̂−1∗
n Ḡn)− s(p� Θ̂n))

∣∣�
Looking at the second portion of the above expression, we get

s(p� Σ̂−1∗
n Ḡn)− s(p� Θ̂n)= s(p+(Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p� Θ̂n)− s(p� Θ̂n)�

By Theorem 3.3.1 and the discussion on page 160 of Schneider (1993), any
nonempty, convex, and compact subset of �d+1 can be approximated arbi-
trarily accurately by a nonempty, strictly convex, and compact subset of �d+1.
Hence, for any εn = op(

1√
n
) we can find a sequence of nonempty, strictly con-

vex, and compact sets Γ̄n such thatH(Θ̂n� Γ̄n) < εn = op( 1√
n
), which implies that

|s(p� Θ̂n)− s(p� Γ̄n)| = op( 1√
n
) uniformly in p ∈ �d+1. Under the assumptions of

Theorem 4.3, s(p�Θ) is Fréchet differentiable at p with gradient equal to ξp.
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Similarly, because Γ̄n is a strictly convex set, s(p� Γ̄n) is Fréchet differentiable
at p with gradient ς̄n�p = Γ̄n ∩ {γ ∈ �d+1 : 〈γ�p〉 = s(p� Γ̄n)}. Hence

√
n
∣∣[s(p+(Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p� Θ̂n)− s(p� Θ̂n)

]
− [s(p+(Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p�Θ)− s(p�Θ)]∣∣

≤ √
n
∣∣[s(p+(Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p� Θ̂n)− s(p� Θ̂n)

]
− [s(p+(Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p� Γ̄n)− s(p�Σ−1Γ̄n)

]∣∣
+ √

n
∣∣[s(p+(Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p� Γ̄n)− s(p�Σ−1Γ̄n)

]
− [s(p+(Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p�Θ)− s(p�Θ)]∣∣

≤ √
nop

(
1√
n

)
+ √

n|(Σ̂n − Σ̂∗
n)Σ̂

−1∗
n p[ς̄n�p − ξp]| + op(1)

= op(1)�

where the last inequality follows from the fact that s(p� Γ̄n) and s(p�Θ) are
Fréchet differentiable for any p ∈ �d+1\{0}. The last equality follows because
((Σ̂n − Σ̂∗

n)Σ̂
−1∗
n p)=Op( 1√

n
) and because ς̄n�p − ξp = op(1) due to the fact that

|s(p�Θ)− s(p� Γ̄n)| = op(1) uniformly in p ∈ �d+1. Hence

r∗n
A=√

n sup
p∈Sd

∣∣(s(p�Σ−1Ḡ∗
n)− s(p�Σ−1Ḡn))

+ (s(p+(Σ̂n − Σ̂∗
n)Σ̂

−1∗
n p�Θ)− s(p�Θ))∣∣�

By Theorem 2.4 of Giné and Zinn (1990) and standard arguments, denoting
by u∗

n(p)≡ (Σ̂∗
n − Σ̂n)Σ̂−1∗

n p�

√
n

[ 1
n

∑n

i=1 s(·�Σ−1G∗
i )− 1

n

∑n

i=1 s(·�Σ−1Gi)

u∗
n(·)

]
�⇒

(
zΣ

−1
(·)

u(·)
)

as a sequence of processes indexed by p ∈ Sd , where ( zΣ−1
(p) u(p) ) is the

(d+ 2)-dimensional normal random vector in (A.5). Therefore an application
of the delta method for the bootstrap (Van der Vaart and Wellner (2000, The-
orem 3.9.11)) implies that

√
n
[
(s(·�Σ−1Ḡ∗

n)− s(·�Σ−1Ḡn))+ (s(·� Σ̂−1∗
n Ḡn)− s(·� Θ̂n))

]
d→zΣ

−1
(·)− 〈ξp�u(·)〉
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as a sequence of processes indexed by p ∈ Sd . By the continuous mapping
theorem r∗n

d→‖v‖C(Sd), where v(p) ≡ zΣ
−1
(p) − 〈ξp�u(p)〉 for each p ∈ Sd . It

then follows by the same argument as in the proof of Proposition 2.1 that
since Var(v(p)) > 0 for each p ∈ Sd , the critical values of the simulated dis-
tribution consistently estimate the critical values of ‖v‖C(Sd), that is, ĉαn =
cα + op(1). Q.E.D.
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